cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A260962 Numbers k such that phi(k) = phi'(k'), where phi(k) is the Euler totient function of k and k' is the arithmetic derivative of k.

Original entry on oeis.org

8, 26, 122, 351, 31195, 47201, 51243, 118265, 300985, 472491, 672147, 673863, 850969, 931383, 1440625, 3000927, 3669213, 3740755, 4688645, 4822143, 4864175, 11224565, 13897079, 13949343, 16362857, 16744355, 18844265, 19536205, 35580099, 38656975, 42056215, 46294105
Offset: 1

Views

Author

Paolo P. Lava, Aug 06 2015

Keywords

Examples

			Arithmetic derivative of 26 is 15, phi(15) = 8 and 8' = 12 that is equal to phi(26).
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q) local a,b,n,p;
    for n from 1 to q do a:=phi(n*add(op(2,p)/op(1,p),p=ifactors(n)[2]));
    b:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]);
    if phi(n)=b then print(n); fi; od; end: P(10^9);
  • Mathematica
    f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Select[Range@ 100000, f@ EulerPhi@ f@ # == EulerPhi@ # &] (* Michael De Vlieger, Aug 07 2015, after Michael Somos at A003415 *)

A353702 Composite k such that tau(k') = (tau(k))', where tau(k) is the number of divisors of k (A000005) and k' is the arithmetic derivative of k (A003415).

Original entry on oeis.org

12, 15, 21, 26, 27, 33, 38, 57, 62, 69, 74, 85, 88, 93, 106, 108, 129, 133, 134, 145, 166, 177, 178, 205, 213, 217, 218, 226, 237, 248, 249, 253, 254, 262, 265, 278, 309, 314, 328, 362, 375, 376, 393, 398, 417, 422, 424, 445, 459, 466, 469, 488, 489, 493, 502
Offset: 1

Views

Author

Marius A. Burtea, May 07 2022

Keywords

Comments

Since for any prime number p, p' = 1 and (tau(p))' = 2' = 1 = tau(1) = tau (p'), the sequence requires only composite numbers that satisfy the given relation.
For p in A092109 the number m = 3*p is a term. Indeed, (tau(m))' = (tau(3*p))' = 4' = 4 and tau(m') = tau((3*p)') = tau(p + 3) = 4, so m is a term.
If p is in A045536 then p, p + 2 and 2*p + 1 are prime numbers and m = 3*(2*p + 1) is a term. Indeed, tau(m') = tau((3*(2*p + 1))') = tau(2*p + 4) = tau(2*(p+2)) = 4 and (tau(m))' = (tau((3*(2*p + 1)))' = 4' = 4, so m is a term.
If k is in A174100 then the numbers 2*k + 1 and 6*k + 1 are prime numbers and the numbers m = 2*(6*k + 1) is a term. Indeed, (tau(m))' = (tau(2*(6*k + 1)) )' = 4' = 4 and tau(m') = tau(2*(6*k + 1))') = tau(6*k + 3) = tau(2*(2*k + 1)) = 4, so m is a term.

Examples

			12' = 16, (tau(12)) = 6' = 5 and tau(12') = tau(16) = tau(2^4) = 5, so 12 is a term.
15' = 8, (tau(15))’ = 4' = 4 and tau(15') = tau(8) = tau(2^3) = 4, so 15 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [p:p in [3..550]|not IsPrime(p) and  #Divisors(Floor(f(p))) eq Floor(f(#Divisors(p)))];
    
  • Maple
    isA353702 := proc(n)
        if not isprime(n) and numtheory[tau](A003415(n)) = A003415( numtheory[tau](n) ) then
            true ;
        else
            false;
        end if;
    end proc:
    for n from 2 to 1000 do
        if isA353702(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 05 2023
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[500], CompositeQ[#] && DivisorSigma[0, d[#]] == d[DivisorSigma[0, #]] &] (* Amiram Eldar, May 07 2022 *)
  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(k) = (k>1) && !isprime(k) && numdiv(ad(k)) == ad(numdiv(k)); \\ Michel Marcus, May 08 2022
Showing 1-2 of 2 results.