cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A189058 Number of n X n binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

2, 16, 316, 13452, 1492864, 477128662, 394122762759, 784513337393283, 3926743880389817150, 51771451826541027208329, 1779743524151020048520647828, 155456866004795629005264664261677
Offset: 1

Views

Author

R. H. Hardin Apr 16 2011

Keywords

Comments

Diagonal of A189064

Examples

			Some solutions for 3X3
..1..1..1....0..0..0....1..1..1....1..0..1....1..0..1....1..0..1....0..1..1
..1..0..0....0..0..1....1..1..0....0..0..1....1..1..0....0..1..1....1..0..1
..0..1..1....1..1..1....1..1..0....1..1..0....1..1..0....1..0..1....1..0..1
		

A189059 Number of n X 4 binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

12, 144, 1404, 13452, 128628, 1228512, 11733712, 112065936, 1070316016, 10222334864, 97631091776, 932451368576, 8905621502912, 85055475378112, 812344639697216, 7758510674743296, 74099692358173440, 707708558738821376
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2011

Keywords

Comments

Column 4 of A189064.

Examples

			Some solutions for 3 X 4:
..1..0..0..0....1..0..0..1....0..1..1..0....0..0..0..0....0..1..1..0
..0..0..0..0....0..0..1..1....0..0..0..1....1..0..0..0....1..1..0..0
..1..1..0..0....1..1..0..0....0..0..1..1....1..1..0..1....1..0..1..1
		

Crossrefs

Cf. A189064.

Formula

Empirical: a(n) = 12*a(n-1) -20*a(n-2) -40*a(n-3) +64*a(n-4) +100*a(n-5) -176*a(n-6) +64*a(n-7).
Empirical g.f.: 4*x*(3 - 21*x^2 - 9*x^3 + 69*x^4 - 60*x^5 + 16*x^6) / (1 - 12*x + 20*x^2 + 40*x^3 - 64*x^4 - 100*x^5 + 176*x^6 - 64*x^7). - Colin Barker, May 01 2018

A189060 Number of nX5 binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

21, 441, 6768, 99721, 1492864, 22289912, 333124565, 4978704008, 74410715409, 1112149145053, 16622281551532, 248438608557405, 3713193773280868, 55497854913016132, 829477855588392793, 12397479511499889924
Offset: 1

Views

Author

R. H. Hardin Apr 16 2011

Keywords

Comments

Column 5 of A189064

Examples

			Some solutions for 3X5
..0..1..1..1..0....1..1..0..0..0....0..0..0..1..1....0..0..0..0..1
..1..1..1..1..1....1..1..1..1..0....0..0..1..1..0....1..1..0..1..1
..0..1..1..1..1....1..1..1..0..0....1..0..1..1..1....1..1..0..0..1
		

Formula

Empirical: a(n) = 21*a(n-1) -80*a(n-2) -240*a(n-3) +1115*a(n-4) +2917*a(n-5) -15840*a(n-6) +21676*a(n-7) -10784*a(n-8) +1216*a(n-9) for n>10

A189061 Number of nX6 binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

37, 1369, 33893, 795741, 19468046, 477128662, 11711612310, 287687887135, 7067105036501, 173620295413143, 4265418644778934, 104791458935593868, 2574487020801597635, 63249299061752722582, 1553891946650453527104
Offset: 1

Views

Author

R. H. Hardin Apr 16 2011

Keywords

Comments

Column 6 of A189064

Examples

			Some solutions for 3X6
..0..1..1..1..1..0....1..0..0..0..1..1....0..0..1..1..0..0....1..1..1..1..0..1
..0..1..1..0..1..1....0..0..1..1..1..1....0..1..1..0..0..0....0..0..0..0..0..0
..1..0..0..1..1..1....0..1..1..1..1..1....0..1..1..1..0..1....1..1..1..1..0..0
		

Formula

Empirical: a(n) = 37*a(n-1) -284*a(n-2) -1134*a(n-3) +14360*a(n-4) +36737*a(n-5) -643348*a(n-6) +2085746*a(n-7) -2368868*a(n-8) +807969*a(n-9) -4053547*a(n-10) +13028432*a(n-11) -14665678*a(n-12) +6463282*a(n-13) -256476*a(n-14) -534719*a(n-15) +81847*a(n-16) +10344*a(n-17) -1936*a(n-18) for n>19

A189062 Number of nX7 binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

65, 4225, 167473, 6254245, 247434731, 9879008482, 394122762759, 15741481568133, 628654322665216, 25107774055994272, 1002781006865748277, 40050163212918655689, 1599569923398798013092, 63885462706897834709856
Offset: 1

Views

Author

R. H. Hardin Apr 16 2011

Keywords

Comments

Column 7 of A189064

Examples

			Some solutions for 3X7
..0..0..1..1..1..0..1....1..0..0..0..1..1..1....0..1..1..1..1..0..0
..0..1..1..0..1..1..1....1..1..0..0..1..1..1....0..0..0..1..1..1..0
..0..0..1..1..1..1..0....1..1..1..1..0..0..0....0..1..1..1..1..1..0
		

Formula

Empirical: a(n) = 65*a(n-1) -1004*a(n-2) -3611*a(n-3) +157300*a(n-4) +81045*a(n-5) -19668650*a(n-6) +142840703*a(n-7) -196623499*a(n-8) -1353631846*a(n-9) +1905222430*a(n-10) +25967816452*a(n-11) -88632433680*a(n-12) -24497919256*a(n-13) +492429488000*a(n-14) -328468670848*a(n-15) -1667442971072*a(n-16) +2551164281280*a(n-17) +2174730364192*a(n-18) -7089478236160*a(n-19) +1860469086784*a(n-20) +7515148920704*a(n-21) -5623168470272*a(n-22) -3836199865856*a(n-23) +5112996680192*a(n-24) +908667454720*a(n-25) -2703111798016*a(n-26) +26999938048*a(n-27) +940783903232*a(n-28) -80967908352*a(n-29) -216781387776*a(n-30) +23102492672*a(n-31) +31327645696*a(n-32) -3490095104*a(n-33) -2390302720*a(n-34) +290996224*a(n-35) +69599232*a(n-36) -9437184*a(n-37) for n>38

A189063 Number of nX8 binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

114, 12996, 818962, 48152625, 3035094004, 193897027545, 12333648780753, 784513337393283, 49892044101743764, 3172494715431581842, 201730419928227850408, 12827246658901296355915, 815633927455532557296101
Offset: 1

Views

Author

R. H. Hardin Apr 16 2011

Keywords

Comments

Column 8 of A189064

Examples

			Some solutions for 3X8
..0..0..0..1..1..1..1..0....0..0..0..1..1..0..0..0....0..0..0..1..1..1..0..0
..1..0..0..1..1..0..1..1....0..0..0..1..1..0..0..0....1..1..1..1..1..0..0..1
..1..0..0..0..1..1..1..1....1..0..0..1..1..0..0..1....1..0..0..1..1..1..0..0
		

Formula

Empirical: a(n) = 114*a(n-1) -3497*a(n-2) -2452*a(n-3) +1560416*a(n-4) -8039642*a(n-5) -539387484*a(n-6) +9000344115*a(n-7) -17224045720*a(n-8) -607579979813*a(n-9) +2419081199647*a(n-10) +45518514676983*a(n-11) -396458997921185*a(n-12) -250049021056270*a(n-13) +13547120597094826*a(n-14) -22455849753318015*a(n-15) -310029846143956733*a(n-16) +1171931161262730851*a(n-17) +3459314746639960461*a(n-18) -23808666694124785081*a(n-19) -17012475826073920772*a(n-20) +330444405248735605861*a(n-21) -254142306992730494611*a(n-22) -2850488875199551765953*a(n-23) +5056384375469897145139*a(n-24) +17149458954580126860508*a(n-25) -50863279261379563551784*a(n-26) -54392350684872690123620*a(n-27) +291020309900918572103944*a(n-28) +73167926541893348887288*a(n-29) -1210703385102349647168160*a(n-30) +395480478086505387905472*a(n-31) +3343647004909943262448272*a(n-32) -2103984902051299667113552*a(n-33) -6874610307464037175470352*a(n-34) +5510237439717876253158784*a(n-35) +10841926764746149410551168*a(n-36) -9537830635437839059513856*a(n-37) -13432623971577791602755328*a(n-38) +12155543666334011690485248*a(n-39) +12619098826813711020390400*a(n-40) -11602226637002519657436160*a(n-41) -8487192591211837424132096*a(n-42) +8339025250250246905040896*a(n-43) +3330776125687421755568128*a(n-44) -4117445082833297179525120*a(n-45) -207512143107651284566016*a(n-46) +1182004377093820726640640*a(n-47) -604649414000777328066560*a(n-48) +97567708997401810305024*a(n-49) +233610049599200871579648*a(n-50) -171876972295136886128640*a(n-51) -5589140187469370621952*a(n-52) +41443406532865041629184*a(n-53) -13180730525026491564032*a(n-54) +378684214047546540032*a(n-55) +388877359986180620288*a(n-56) -24209817090828271616*a(n-57) -8461280736433930240*a(n-58) +894567058405064704*a(n-59) for n>61

A189065 Number of 3 X n binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

8, 64, 316, 1404, 6768, 33893, 167473, 818962, 4010648, 19690604, 96675456, 474386856, 2327622672, 11421964786, 56051074387, 275054292017, 1349734580410, 6623378938847, 32502145147429, 159493994166901, 782665804236299
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2011

Keywords

Comments

Row 3 of A189064.

Examples

			Some solutions for 3 X 3
..1..0..1....1..1..0....1..0..1....1..1..1....1..1..0....0..1..1....1..1..1
..0..0..0....1..1..0....0..0..0....1..1..1....1..0..1....1..1..0....0..1..1
..0..0..0....1..1..0....1..0..1....1..1..1....1..0..0....0..0..1....1..0..0
		

Crossrefs

Cf. A189064.

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +33*a(n-3) +51*a(n-4) +108*a(n-5) +325*a(n-6) +320*a(n-7) +280*a(n-8) +264*a(n-9) -424*a(n-10) -882*a(n-11) -362*a(n-12) +68*a(n-13) +97*a(n-14) +92*a(n-15) +38*a(n-16) -a(n-17) -a(n-18) -2*a(n-19) -a(n-20).

A189066 Number of 4Xn binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

16, 256, 2032, 13452, 99721, 795741, 6254245, 48152625, 370592973, 2865971562, 22186038788, 171581957421, 1326434442623, 10255698509420, 79304524508802, 613232220011159, 4741748954099224, 36664951063937325, 283508828799113387
Offset: 1

Views

Author

R. H. Hardin Apr 16 2011

Keywords

Comments

Row 4 of A189064

Examples

			Some solutions for 4X3
..1..0..1....1..0..1....0..0..0....0..0..1....0..1..1....0..1..1....0..0..0
..1..0..1....1..1..0....0..0..1....0..0..1....1..1..0....0..1..1....0..0..1
..1..1..0....0..0..1....1..1..1....1..0..1....1..1..0....1..1..1....0..1..1
..1..1..0....0..0..0....0..1..1....0..1..1....1..0..0....1..1..0....1..1..1
		

Formula

Empirical: a(n) = 10*a(n-1) -45*a(n-2) +228*a(n-3) -188*a(n-4) +150*a(n-5) +4626*a(n-6) -13376*a(n-7) -1649*a(n-8) +19848*a(n-9) -231951*a(n-10) +230746*a(n-11) +963441*a(n-12) -827010*a(n-13) +1774159*a(n-14) +1058496*a(n-15) -21494685*a(n-16) -4610158*a(n-17) +53081097*a(n-18) +19366638*a(n-19) -25517799*a(n-20) -22610518*a(n-21) -88873155*a(n-22) -23222754*a(n-23) +102366795*a(n-24) +51332664*a(n-25) +73408782*a(n-26) +14377760*a(n-27) -114904736*a(n-28) -46363458*a(n-29) -54868807*a(n-30) -10844130*a(n-31) +63311244*a(n-32) +17975200*a(n-33) +37011575*a(n-34) +4067316*a(n-35) -10427306*a(n-36) -3018706*a(n-37) -9120314*a(n-38) -334102*a(n-39) +409405*a(n-40) +270332*a(n-41) +950100*a(n-42) -1882*a(n-43) -3011*a(n-44) -8422*a(n-45) -42197*a(n-46) +416*a(n-47) +1220*a(n-48) +32*a(n-49) +688*a(n-50) -48*a(n-52)

A189067 Number of 5Xn binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

32, 1024, 13045, 128628, 1492864, 19468046, 247434731, 3035094004, 37223091438, 460689365228, 5711178484175, 70659978573991, 873558525822604, 10803610313863704, 133645294034855875, 1653171583707062409
Offset: 1

Views

Author

R. H. Hardin Apr 16 2011

Keywords

Comments

Row 5 of A189064

Examples

			Some solutions for 5X3
..0..0..1....0..0..1....1..1..0....0..1..1....0..0..0....0..1..1....0..1..1
..1..1..1....0..1..1....1..1..1....0..0..0....1..1..1....1..1..0....0..0..0
..1..0..0....1..0..1....1..0..1....0..0..0....1..0..1....1..1..1....1..1..0
..0..1..1....1..0..0....0..0..0....0..0..1....0..0..0....1..1..1....1..0..0
..1..0..0....0..1..1....1..1..1....0..0..0....0..0..0....1..1..1....0..1..1
		

A189068 Number of 6Xn binary arrays without the pattern 0 1 0 antidiagonally or horizontally.

Original entry on oeis.org

64, 4096, 83737, 1228512, 22289912, 477128662, 9879008482, 193897027545, 3795059283970, 75338008528542, 1501174987570253, 29820335296953677, 591419918694769380, 11735316461620194046, 232979927617517115736
Offset: 1

Views

Author

R. H. Hardin Apr 16 2011

Keywords

Comments

Row 6 of A189064

Examples

			Some solutions for 6X3
..0..0..1....1..1..1....1..0..0....0..1..1....1..1..0....1..0..0....0..1..1
..1..0..0....1..0..1....1..1..1....0..1..1....0..0..1....1..0..0....0..1..1
..1..1..1....1..1..1....1..1..1....1..0..0....1..0..1....0..0..1....0..0..0
..1..1..0....1..0..0....1..1..1....0..0..1....0..0..0....1..0..0....0..1..1
..1..0..0....1..0..0....0..1..1....0..0..0....0..0..0....1..0..0....1..0..0
..0..1..1....0..0..1....0..1..1....1..0..1....1..0..1....1..0..0....0..0..0
		
Showing 1-10 of 12 results. Next