A189076 Number of compositions of n that avoid the pattern 23-1.
1, 1, 2, 4, 8, 16, 31, 61, 118, 228, 440, 846, 1623, 3111, 5955, 11385, 21752, 41530, 79250, 151161, 288224, 549408, 1047034, 1995000, 3800662, 7239710, 13789219, 26261678, 50012275, 95237360, 181350695, 345315255, 657506300, 1251912618, 2383636280, 4538364446
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Aug 19 2024: (Start) The a(6) = 31 compositions: . (6) (5,1) (4,1,1) (3,1,1,1) (2,1,1,1,1) (1,1,1,1,1,1) (1,5) (1,4,1) (1,3,1,1) (1,2,1,1,1) (4,2) (1,1,4) (1,1,3,1) (1,1,2,1,1) (2,4) (3,2,1) (1,1,1,3) (1,1,1,2,1) (3,3) (3,1,2) (2,2,1,1) (1,1,1,1,2) (2,3,1) (2,1,2,1) (2,1,3) (2,1,1,2) (1,2,3) (1,2,2,1) (2,2,2) (1,2,1,2) (1,1,2,2) Missing is (1,3,2), reverse of (2,3,1). (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- S. Heubach, T. Mansour and A. O. Munagi, Avoiding Permutation Patterns of Type (2,1) in Compositions, Online Journal of Analytic Combinatorics, 4 (2009).
- Wikipedia, Permutation pattern.
- Gus Wiseman, Sequences counting and ranking compositions by their leaders (for six types of runs).
Crossrefs
Programs
-
Maple
A189075 := proc(n) local g,i; g := 1; for i from 1 to n do 1-x^i/mul ( 1-x^j,j=i+1..n-i) ; g := g*% ; end do: g := expand(1/g) ; g := taylor(g,x=0,n+1) ; coeftayl(g,x=0,n) ; end proc: # R. J. Mathar, Apr 16 2011
-
Mathematica
a[n_] := Module[{g = 1, xi}, Do[xi = 1 - x^i/Product[1 - x^j, {j, i+1, n-i}]; g = g xi, {i, n}]; SeriesCoefficient[1/g, {x, 0, n}]]; a /@ Range[0, 32] (* Jean-François Alcover, Apr 02 2020, after R. J. Mathar *) Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,y_,z_,_,x_,_}/;x
Gus Wiseman, Aug 19 2024 *)
Comments