A374629
Irregular triangle listing the leaders of maximal weakly increasing runs in the n-th composition in standard order.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 3, 3, 2, 1, 3, 1, 3, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
The 58654th composition in standard order is (1,1,3,2,4,1,1,1,2), with maximal weakly increasing runs ((1,1,3),(2,4),(1,1,1,2)), so row 58654 is (1,2,1).
The nonnegative integers, corresponding compositions, and leaders of maximal weakly increasing runs begin:
0: () -> () 15: (1,1,1,1) -> (1)
1: (1) -> (1) 16: (5) -> (5)
2: (2) -> (2) 17: (4,1) -> (4,1)
3: (1,1) -> (1) 18: (3,2) -> (3,2)
4: (3) -> (3) 19: (3,1,1) -> (3,1)
5: (2,1) -> (2,1) 20: (2,3) -> (2)
6: (1,2) -> (1) 21: (2,2,1) -> (2,1)
7: (1,1,1) -> (1) 22: (2,1,2) -> (2,1)
8: (4) -> (4) 23: (2,1,1,1) -> (2,1)
9: (3,1) -> (3,1) 24: (1,4) -> (1)
10: (2,2) -> (2) 25: (1,3,1) -> (1,1)
11: (2,1,1) -> (2,1) 26: (1,2,2) -> (1)
12: (1,3) -> (1) 27: (1,2,1,1) -> (1,1)
13: (1,2,1) -> (1,1) 28: (1,1,3) -> (1)
14: (1,1,2) -> (1) 29: (1,1,2,1) -> (1,1)
Positions of non-weakly decreasing rows are
A375137.
A335456 counts patterns matched by compositions.
All of the following pertain to compositions in standard order:
- Ranks of non-contiguous compositions are
A374253, counted by
A335548.
Cf.
A046660,
A106356,
A188920,
A189076,
A238343,
A272919,
A333213,
A373949,
A374634,
A374635,
A374637,
A374701,
A375123.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[First/@Split[stc[n],LessEqual],{n,0,100}]
A188920
a(n) is the limiting term of the n-th column of the triangle in A188919.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 22, 38, 63, 105, 169, 274, 434, 686, 1069, 1660, 2548, 3897, 5906, 8911, 13352, 19917, 29532, 43605, 64056, 93715, 136499, 198059, 286233, 412199, 591455, 845851, 1205687, 1713286, 2427177, 3428611, 4829563, 6784550, 9505840, 13284849
Offset: 0
From _Gus Wiseman_, Aug 20 2024: (Start)
The a(0) = 1 through a(6) = 22 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(112) (41) (42)
(211) (113) (51)
(1111) (122) (114)
(212) (123)
(221) (132)
(311) (213)
(1112) (222)
(2111) (312)
(11111) (321)
(411)
(1113)
(1122)
(2112)
(2211)
(3111)
(11112)
(21111)
(111111)
(End)
- John Tyler Rascoe, Table of n, a(n) for n = 0..200
- A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011.
- Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, arXiv preprint arXiv:1108.2642 [math.CO], 2011-2012.
- Wikipedia, Permutation pattern.
- Gus Wiseman, Sequences counting and ranking compositions by their leaders (for six types of runs).
For leaders of identical runs we have
A000041.
For weakly increasing leaders we have
A374635.
For leaders of anti-runs we have
A374680.
For leaders of strictly increasing runs we have
A374689.
-
b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1, Sum[b[u - j, o + j - 1]*x^(o + j - 1), {j, 1, u}] + Sum[If[u == 0, b[u + j - 1, o - j]*x^(o - j), 0], {j, 1, o}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[0, n]];
Take[T[40], 40] (* Jean-François Alcover, Sep 15 2018, after Alois P. Heinz in A188919 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Greater@@First/@Split[Reverse[#],LessEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 20 2024 *)
- or -
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], !MatchQ[#,{_,y_,z_,_,x_,_}/;x<=yGus Wiseman, Aug 20 2024 *)
-
B_x(i,N) = {my(x='x+O('x^N), f=(x^i)/(1-x^i)*prod(j=i+1,N-i,1/(1-x^j))); f}
A_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N, B_x(i,N)*prod(j=1,i-1,1+B_x(j,N)))); Vec(f)}
A_x(60) \\ John Tyler Rascoe, Aug 23 2024
A374632
Number of integer compositions of n whose leaders of weakly increasing runs are distinct.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 23, 40, 69, 119, 200, 335, 557, 917, 1499, 2433, 3920, 6280, 10004, 15837, 24946, 39087, 60952, 94606, 146203, 224957, 344748, 526239, 800251, 1212527, 1830820, 2754993, 4132192, 6178290, 9209308, 13686754, 20282733, 29973869, 44175908, 64936361
Offset: 0
The composition (4,2,2,1,1,3) has weakly increasing runs ((4),(2,2),(1,1,3)), with leaders (4,2,1), so is counted under a(13).
The a(0) = 1 through a(5) = 13 compositions:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(211) (113)
(1111) (122)
(212)
(221)
(311)
(1112)
(2111)
(11111)
Types of runs (instead of weakly increasing):
- For leaders of strictly increasing runs we have
A374687, ranks
A374698.
- For leaders of weakly decreasing runs we have
A374743, ranks
A335467.
- For leaders of strictly decreasing runs we have
A374761, ranks
A374767.
Types of run-leaders (instead of distinct):
- For strictly decreasing leaders we appear to have
A188920.
- For weakly decreasing leaders we appear to have
A189076.
- For identical leaders we have
A374631.
- For weakly increasing leaders we have
A374635.
- For strictly increasing leaders we have
A374634.
A003242 counts anti-run compositions.
A335456 counts patterns matched by compositions.
A374637 counts compositions by sum of leaders of weakly increasing runs.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],UnsameQ@@First/@Split[#,LessEqual]&]],{n,0,15}]
-
dfs(m, r, v) = 1 + sum(s=1, min(m, r-1), if(!setsearch(v, s), dfs(m-s, s, setunion(v, [s]))*x^s/(1-x^s) + sum(t=s+1, m-s, dfs(m-s-t, t, setunion(v, [s]))*x^(s+t)/prod(i=s, t, 1-x^i))));
lista(nn) = Vec(dfs(nn, nn+1, []) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025
A374635
Number of integer compositions of n whose leaders of weakly increasing runs are themselves weakly increasing.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 20, 36, 69, 130, 247, 467, 890, 1689, 3213, 6110, 11627, 22121, 42101, 80124, 152512, 290300, 552609, 1051953, 2002583, 3812326, 7257679, 13816867, 26304254, 50077792, 95338234, 181505938, 345554234, 657874081, 1252478707, 2384507463, 4539705261
Offset: 0
The composition (1,3,3,2,4,2) has weakly increasing runs ((1,3,3),(2,4),(2)), with leaders (1,2,2), so is counted under a(15).
The a(0) = 1 through a(6) = 20 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(111) (22) (23) (24)
(112) (113) (33)
(121) (122) (114)
(1111) (131) (123)
(1112) (132)
(1121) (141)
(1211) (222)
(11111) (1113)
(1122)
(1131)
(1212)
(1221)
(1311)
(11112)
(11121)
(11211)
(12111)
(111111)
Ranked by positions of weakly increasing rows in
A374629 (sums
A374630).
Types of runs (instead of weakly increasing):
- For leaders of constant runs we have
A000041.
- For leaders of weakly decreasing runs we have
A188900.
- For leaders of anti-runs we have
A374681.
- For leaders of strictly increasing runs we have
A374690.
- For leaders of strictly decreasing runs we have
A374764.
Types of run-leaders (instead of weakly increasing):
- For strictly decreasing leaders we appear to have
A188920.
- For weakly decreasing leaders we appear to have
A189076.
- For identical leaders we have
A374631.
- For strictly increasing leaders we have
A374634.
A003242 counts anti-run compositions.
A335456 counts patterns matched by compositions.
A374637 counts compositions by sum of leaders of weakly increasing runs.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,LessEqual]&]],{n,0,15}]
-
dfs(m, r, u) = 1 + sum(s=u, min(m, r-1), x^s/(1-x^s) + sum(t=s+1, m-s, dfs(m-s-t, t, s)*x^(s+t)/prod(i=s, t, 1-x^i)));
lista(nn) = Vec(dfs(nn, nn+1, 1) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025
A374683
Irregular triangle read by rows where row n lists the leaders of strictly increasing runs in the n-th composition in standard order.
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 3, 1, 1, 1
Offset: 0
The maximal strictly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2),(2),(1,2,5),(1),(1),(1)), so row 1234567 is (3,2,1,2,1,1,1,1).
The nonnegative integers, corresponding compositions, and leaders of strictly increasing runs begin:
0: () -> () 15: (1,1,1,1) -> (1,1,1,1)
1: (1) -> (1) 16: (5) -> (5)
2: (2) -> (2) 17: (4,1) -> (4,1)
3: (1,1) -> (1,1) 18: (3,2) -> (3,2)
4: (3) -> (3) 19: (3,1,1) -> (3,1,1)
5: (2,1) -> (2,1) 20: (2,3) -> (2)
6: (1,2) -> (1) 21: (2,2,1) -> (2,2,1)
7: (1,1,1) -> (1,1,1) 22: (2,1,2) -> (2,1)
8: (4) -> (4) 23: (2,1,1,1) -> (2,1,1,1)
9: (3,1) -> (3,1) 24: (1,4) -> (1)
10: (2,2) -> (2,2) 25: (1,3,1) -> (1,1)
11: (2,1,1) -> (2,1,1) 26: (1,2,2) -> (1,2)
12: (1,3) -> (1) 27: (1,2,1,1) -> (1,1,1)
13: (1,2,1) -> (1,1) 28: (1,1,3) -> (1,1)
14: (1,1,2) -> (1,1) 29: (1,1,2,1) -> (1,1,1)
All of the following pertain to compositions in standard order:
- Ranks of non-contiguous compositions are
A374253, counted by
A335548.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[First/@Split[stc[n],Less],{n,0,100}]
A374740
Irregular triangle read by rows where row n lists the leaders of weakly decreasing runs in the n-th composition in standard order.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 2, 1, 4, 3, 2, 2, 1, 3, 1, 2, 1, 2, 1, 5, 4, 3, 3, 2, 3, 2, 2, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 5, 1, 4, 1, 3, 1, 3, 1, 2, 3, 1, 2, 1, 2, 2, 1, 2, 1, 4
Offset: 0
The maximal weakly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2,2,1),(2),(5,1,1,1)), so row 1234567 is (3,2,2,5).
The nonnegative integers, corresponding compositions, and leaders of weakly decreasing runs begin:
0: () -> () 15: (1,1,1,1) -> (1)
1: (1) -> (1) 16: (5) -> (5)
2: (2) -> (2) 17: (4,1) -> (4)
3: (1,1) -> (1) 18: (3,2) -> (3)
4: (3) -> (3) 19: (3,1,1) -> (3)
5: (2,1) -> (2) 20: (2,3) -> (2,3)
6: (1,2) -> (1,2) 21: (2,2,1) -> (2)
7: (1,1,1) -> (1) 22: (2,1,2) -> (2,2)
8: (4) -> (4) 23: (2,1,1,1) -> (2)
9: (3,1) -> (3) 24: (1,4) -> (1,4)
10: (2,2) -> (2) 25: (1,3,1) -> (1,3)
11: (2,1,1) -> (2) 26: (1,2,2) -> (1,2)
12: (1,3) -> (1,3) 27: (1,2,1,1) -> (1,2)
13: (1,2,1) -> (1,2) 28: (1,1,3) -> (1,3)
14: (1,1,2) -> (1,2) 29: (1,1,2,1) -> (1,2)
All of the following pertain to compositions in standard order:
- Ranks of non-contiguous compositions are
A374253, counted by
A335548.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[First/@Split[stc[n],GreaterEqual],{n,0,100}]
A374761
Number of integer compositions of n whose leaders of strictly decreasing runs are distinct.
Original entry on oeis.org
1, 1, 1, 3, 5, 7, 13, 27, 45, 73, 117, 205, 365, 631, 1061, 1711, 2777, 4599, 7657, 12855, 21409, 35059, 56721, 91149, 146161, 234981, 379277, 612825, 988781, 1587635, 2533029, 4017951, 6342853, 9985087, 15699577, 24679859, 38803005, 60979839, 95698257, 149836255
Offset: 0
The composition (3,1,4,3,2,1,2,8) has strictly decreasing runs ((3,1),(4,3,2,1),(2),(8)), with leaders (3,4,2,8), so is counted under a(24).
The a(0) = 1 through a(6) = 13 compositions:
() (1) (2) (3) (4) (5) (6)
(12) (13) (14) (15)
(21) (31) (23) (24)
(121) (32) (42)
(211) (41) (51)
(131) (123)
(311) (132)
(141)
(213)
(231)
(312)
(321)
(411)
For identical instead of distinct leaders we have
A374760, ranks
A374759.
For partitions instead of compositions we have
A375133.
Other types of runs:
- For leaders of identical runs we have
A000005 for n > 0, ranks
A272919.
Other types of run-leaders:
- For strictly increasing leaders we have
A374762.
- For strictly decreasing leaders we have
A374763.
- For weakly increasing leaders we have
A374764.
- For weakly decreasing leaders we have
A374765.
A374700 counts compositions by sum of leaders of strictly increasing runs.
Cf.
A034296,
A106356,
A188920,
A189076,
A238343,
A333213,
A374517,
A374631,
A374640,
A374686,
A374742.
-
Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],UnsameQ@@First/@Split[#,Greater]&]],{n,0,15}]
-
dfs(m, r, v) = 1 + sum(s=r, m, if(!setsearch(v, s), dfs(m-s, s, setunion(v, [s]))*x^s + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, setunion(v, [s]))*x^(s+t)*prod(i=t+1, s-1, 1+x^i))));
lista(nn) = Vec(dfs(nn, 1, []) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025
A374768
Numbers k such that the leaders of weakly increasing runs in the k-th composition in standard order (A066099) are distinct.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 52, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81
Offset: 1
The 4444th composition in standard order is (4,2,2,1,1,3), with weakly increasing runs ((4),(2,2),(1,1,3)), with leaders (4,2,1), so 4444 is in the sequence.
These are the positions of strict rows in
A374629 (which has sums
A374630).
Identical instead of distinct leaders are
A374633, counted by
A374631.
For leaders of strictly increasing runs we have
A374698, counted by
A374687.
For leaders of weakly decreasing runs we have
A374701, counted by
A374743.
For leaders of strictly decreasing runs we have
A374767, counted by
A374761.
All of the following pertain to compositions in standard order:
- Ranks of strict compositions are
A233564.
- Ranks of constant compositions are
A272919.
Cf.
A065120,
A188920,
A189076,
A238343,
A333213,
A335449,
A373949,
A274174,
A374249,
A374635,
A374637.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,166],UnsameQ@@First/@Split[stc[#],LessEqual]&]
A358836
Number of multiset partitions of integer partitions of n with all distinct block sizes.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 28, 51, 92, 164, 289, 504, 871, 1493, 2539, 4290, 7201, 12017, 19939, 32911, 54044, 88330, 143709, 232817, 375640, 603755, 966816, 1542776, 2453536, 3889338, 6146126, 9683279, 15211881, 23830271, 37230720, 58015116, 90174847, 139820368, 216286593
Offset: 0
The a(1) = 1 through a(5) = 15 multiset partitions:
{1} {2} {3} {4} {5}
{1,1} {1,2} {1,3} {1,4}
{1,1,1} {2,2} {2,3}
{1},{1,1} {1,1,2} {1,1,3}
{1,1,1,1} {1,2,2}
{1},{1,2} {1,1,1,2}
{2},{1,1} {1},{1,3}
{1},{1,1,1} {1},{2,2}
{2},{1,2}
{3},{1,1}
{1,1,1,1,1}
{1},{1,1,2}
{2},{1,1,1}
{1},{1,1,1,1}
{1,1},{1,1,1}
From _Gus Wiseman_, Aug 21 2024: (Start)
The a(0) = 1 through a(5) = 15 compositions whose leaders of maximal weakly decreasing runs are strictly increasing:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(211) (122)
(1111) (131)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
(End)
The version for set partitions is
A007837.
For sums instead of sizes we have
A271619.
For constant instead of distinct sizes we have
A319066.
These multiset partitions are ranked by
A326533.
For odd instead of distinct sizes we have
A356932.
The version for twice-partitions is
A358830.
The case of distinct sums also is
A358832.
Ranked by positions of strictly increasing rows in
A374740, opposite
A374629.
A001970 counts multiset partitions of integer partitions.
A335456 counts patterns matched by compositions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n],UnsameQ@@Length/@#&]],{n,0,10}]
(* second program *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)
-
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, 1 + polcoef(g, k, y) + O(x*x^n)))} \\ Andrew Howroyd, Dec 31 2022
A374517
Number of integer compositions of n whose leaders of anti-runs are identical.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 25, 46, 85, 160, 301, 561, 1056, 1984, 3730, 7037, 13273, 25056, 47382, 89666, 169833, 322038, 611128, 1160660, 2206219, 4196730, 7988731, 15217557, 29005987, 55321015, 105570219, 201569648, 385059094, 735929616, 1407145439, 2691681402
Offset: 0
The a(0) = 1 through a(5) = 13 compositions:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(1111) (131)
(212)
(221)
(1112)
(1121)
(1211)
(11111)
These compositions have ranks
A374519.
The complement is counted by
A374640.
Other types of runs (instead of anti-):
- For leaders of identical runs we have
A000005 for n > 0, ranks
A272919.
- For leaders of weakly increasing runs we have
A374631, ranks
A374633.
- For leaders of strictly increasing runs we have
A374686, ranks
A374685.
- For leaders of weakly decreasing runs we have
A374742, ranks
A374741.
- For leaders of strictly decreasing runs we have
A374760, ranks
A374759.
Other types of run-leaders (instead of identical):
- For distinct leaders we have
A374518.
- For weakly increasing leaders we have
A374681.
- For strictly increasing leaders we have
A374679.
- For weakly decreasing leaders we have
A374682.
- For strictly decreasing leaders we have
A374680.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],SameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]
-
C_x(N) = {my(g =1/(1 - sum(k=1, N, x^k/(1+x^k))));g}
A_x(i,N) = {my(x='x+O('x^N), f=(x^i)*(C_x(N)*(x^i)+x^i+1)/(1+x^i)^2);f}
B_x(i,j,N) = {my(x='x+O('x^N), f=C_x(N)*x^(i+j)/((1+x^i)*(1+x^j)));f}
D_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N,-1+sum(j=0,N-i, A_x(i,N)^j)*(1-B_x(i,i,N)+sum(k=1,N-i,B_x(i,k,N)))));Vec(f)}
D_x(30) \\ John Tyler Rascoe, Aug 16 2024
Showing 1-10 of 59 results.
Comments