cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189162 The maximum possible value for the apex of a triangle of numbers whose base consists of a permutation of the numbers 1 to n, and each number in a higher row is the sum of the two numbers directly below it.

Original entry on oeis.org

1, 3, 9, 24, 61, 148, 350, 808, 1837, 4116, 9130, 20056, 43746, 94760, 204188, 437712, 934525, 1987252, 4212338, 8900344, 18756886, 39426168, 82693924, 173071024, 361567186, 753984648, 1569877860, 3263572848, 6775522852, 14047800016, 29091783096, 60175932320
Offset: 1

Views

Author

Nathaniel Johnston, Apr 20 2011

Keywords

Comments

The maximum is attained by the triangle with base 1, 3, 5, ..., 2*ceiling(n/2)-1, 2*floor(n/2), ..., 6, 4, 2 (i.e., odd numbers increasing, followed by even numbers decreasing).

Examples

			For n = 5 consider the triangle:
         61
       29  32
     12  17  15
    4   8   9   6
  1   3   5   4   2
This triangle has 61 at its apex and no other such triangle with the numbers 1 - 5 on its base has a larger apex value, so a(5) = 61.
		

Crossrefs

Programs

  • Maple
    a:=proc(n)return 2^(n-1) + add((4*k+1)*binomial(n-1,k),k=0..floor(n/2)-1) + `if`(n mod 2=1,(n-1)*binomial(n-1,(n-1)/2),0):end:
    seq(a(n),n=1..50);
  • Mathematica
    a[n_] := a[n] = Switch[n, 1, 1, 2, 3, 3, 9, 4, 24, _, (1/(n-1))*(4((4n-16)a[n-4] - (4n-16)a[n-3] - 3a[n-2] + (n-1)a[n-1]))];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, May 09 2023, after R. J. Mathar *)

Formula

a(n) = 2^(n-1) + A189390(n-1).
D-finite with recurrence (-n+1)*a(n) +4*(n-1)*a(n-1) -12*a(n-2) +16*(-n+4)*a(n-3) +16*(n-4)*a(n-4)=0. - R. J. Mathar, Jun 17 2021