cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189175 Riordan matrix (1+x/sqrt(1-4*x),(1-sqrt(1-4*x))/2).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 20, 15, 9, 4, 1, 70, 49, 29, 14, 5, 1, 252, 168, 98, 49, 20, 6, 1, 924, 594, 342, 174, 76, 27, 7, 1, 3432, 2145, 1221, 627, 285, 111, 35, 8, 1, 12870, 7865, 4433, 2288, 1067, 440, 155, 44, 9, 1, 48620, 29172, 16302, 8437, 4004, 1716, 649, 209, 54, 10, 1
Offset: 0

Views

Author

Emanuele Munarini, Apr 18 2011

Keywords

Comments

Row sums are A189176, diagonal sums are A189177.

Examples

			Triangle begins:
1
1,1
2,2,1
6,5,3,1
20,15,9,4,1
70,49,29,14,5,1
252,168,98,49,20,6,1
924,594,342,174,76,27,7,1
3432,2145,1221,627,285,111,35,8,1
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]=If[n==k,1,Binomial[2n-k,n-k](n^2+n k-k^2-k)/((2n-k)(2n-k-1))]
    Flatten[Table[T[n,k],{n,0,20},{k,0,n}]]
  • Maxima
    T(n,k):=if n=k then 1 else binomial(2*n-k,n-k)*(n^2+n*k-k^2-k)/((2*n-k)*(2*n-k-1));
    create_list(T(n,k),n,0,20,k,0,n);

Formula

T(n,k)=[x^n] (1+x/sqrt(1-4*x))*((1-sqrt(1-4*x))/2)^k.
T(n,k) = binomial(2*n-k,n-k)*(n^2+n*k-k^2-k)/((2*n-k)*(2*n-k-1)) for k<=n, (n,k) <> (0,0), (1,1).
Recurrence: T(n+1,k+1) = T(n,k) + T(n,k+1) + ... + T(n,n).