cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189177 Diagonal sums of the Riordan matrix (1+x/sqrt(1-4*x),(1-sqrt(1-4*x))/2) (A189175).

Original entry on oeis.org

1, 1, 3, 8, 26, 88, 311, 1125, 4139, 15411, 57901, 219070, 833509, 3185834, 12223298, 47048989, 181596815, 702589992, 2723964698, 10580344863, 41163089721, 160380285133, 625698670720, 2443971874519, 9556455398766, 37404704660996, 146537441530003, 574556162261917
Offset: 0

Views

Author

Emanuele Munarini, Apr 18 2011

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_,k_]=If[n==k,1,Binomial[2n-k,n-k](n^2+n k-k^2-k)/((2n-k)(2n-k-1))]
    Table[Sum[T[n-k,k],{k,0,Floor[n/2]}],{n,0,22}]
  • Maxima
    T(n,k):=if n=k then 1 else binomial(2*n-k,n-k)*(n^2+n*k-k^2-k)/((2*n-k)*(2*n-k-1));
    makelist(sum(T(n-k,k),k,0,floor(n/2)),n,0,22);

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k,n-k)*(n^2-n*k-k^2-k)/((2*n-3*k)*(2*n-3*k-1)), for n>=3.
G.f.: (2-9*x+3*x^2+4*x^3+(x+3*x^2)*sqrt(1-4*x))/(2*(1-4*x)*(1-x+x^3)).