cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A189355 T(n,k) is the number of n X k array permutations with each element moving one space diagonally, horizontally or vertically.

Original entry on oeis.org

0, 1, 1, 0, 4, 0, 1, 13, 13, 1, 0, 45, 48, 45, 0, 1, 160, 557, 557, 160, 1, 0, 565, 3632, 12592, 3632, 565, 0, 1, 2005, 30769, 237297, 237297, 30769, 2005, 1, 0, 7108, 229248, 4791913, 10252800, 4791913, 229248, 7108, 0, 1, 25209, 1815601, 94635005
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2011

Keywords

Comments

Table starts
.0.....1.........0............1................0....................1
.1.....4........13...........45..............160..................565
.0....13........48..........557.............3632................30769
.1....45.......557........12592...........237297..............4791913
.0...160......3632.......237297.........10252800............519621497
.1...565.....30769......4791913........519621497..........64731638400
.0..2005....229248.....94635005......24728774144........7675175968337
.1..7108...1815601...1883785285....1206541811872......927311536349401
.0.25209..13960720..37399042560...58289324009008...111267210412798665
.1.89401.108880333.743166198493.2827118724742121.13385995390731369181

Examples

			Some solutions for 5X3
..1..0..5....4..5..1....4..0..5....4..5..1....3..5..1....1..2..5....3..2..5
..6..3..2....7..0..2....6..1..2....0..8..2....0..8..2....0..7..8....0..1..4
..7..8..4....3..6.11....3..8..7....3..6..7....9..4..7...10..3..4....9..8..7
.12.11.10...10.14..8...12.11.14...13.14.10...12..6.14...13..6.14...12..6.10
..9.14.13....9.12.13...13..9.10....9.12.11...13.10.11....9.12.11...13.14.11
		

Crossrefs

Cf. A189186.

A189179 Number of n X 2 array permutations with each element making a single king move.

Original entry on oeis.org

1, 9, 33, 185, 913, 4777, 24577, 127385, 658801, 3410313, 17648609, 91343481, 472746833, 2446730345, 12663143361, 65538688857, 339198332209, 1755536122697, 9085854920609, 47024245778489, 243376070611729, 1259603657442857
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2011

Keywords

Comments

Column 2 of A189186.

Examples

			Some solutions for 3 X 2:
..1..0....1..2....2..0....2..0....1..0....1..2....3..0....2..3....3..2....3..0
..3..4....5..0....4..1....3..1....4..5....0..5....5..1....0..1....0..1....4..1
..5..2....3..4....5..3....5..4....2..3....3..4....2..4....5..4....5..4....5..2
		

Crossrefs

Cf. A189186.

Formula

Empirical: a(n) = 5*a(n-1) + 4*a(n-2) - 16*a(n-3).
Empirical g.f.: x*(1 + 4*x - 16*x^2) / (1 - 5*x - 4*x^2 + 16*x^3). - Colin Barker, Mar 01 2018

A189180 Number of nX3 array permutations with each element making a single king move.

Original entry on oeis.org

0, 33, 192, 4081, 47936, 733465, 9925824, 142150545, 1982789568, 27997733409, 393091648000, 5533702536417, 77804055183232, 1094555504869945, 15394211168981632, 216536449010819041, 3045646510935265408
Offset: 1

Views

Author

R. H. Hardin Apr 18 2011

Keywords

Comments

Column 3 of A189186

Examples

			Some solutions for 4X3
..3..0..5....4..2..1....3..5..1....3..2..5....1..3..5....3..2..5....3..2..5
..1..6..2....0..3..8....6..0..2....4..0..1....0..6..2....0..1..8....4..0..1
..9..4.11....9..5.11...10..4.11....7..9.11....9.11..4....9..6..4....9.10..7
.10..7..8...10..6..7....7..9..8....6..8.10....7..8.10...10.11..7....6.11..8
		

Formula

Empirical: a(n) = 8*a(n-1) +94*a(n-2) -88*a(n-3) -488*a(n-4) +152*a(n-5) -638*a(n-6) -72*a(n-7) +9*a(n-8)

A189181 Number of nX4 array permutations with each element making a single king move.

Original entry on oeis.org

1, 185, 4081, 251720, 10599449, 524539713, 24377674329, 1162453545201, 54868164490816, 2600517767888745, 123049732810644217, 5826272557390770993, 275793998574143720745, 13056461887253840005544, 618083925262185774246993
Offset: 1

Views

Author

R. H. Hardin Apr 18 2011

Keywords

Comments

Column 4 of A189186

Examples

			Some solutions for 3X4
..1..2..3..6....5..0..3..2....5..0..1..2....4..0..3..2....1..6..3..2
..0..8..7.11....8..1..9..6....8.10..3.11....1..8..9.11....8..0.10.11
..9..4..5.10....4.10.11..7....9..4..6..7....5..6..7.10....9..4..5..7
		

Formula

Empirical: a(n) = 50*a(n-1) +189*a(n-2) -17418*a(n-3) +111208*a(n-4) +452547*a(n-5) -4449430*a(n-6) +190937*a(n-7) +29532742*a(n-8) -4370254*a(n-9) +186074662*a(n-10) -567421032*a(n-11) -487743654*a(n-12) -150818946*a(n-13) -265001610*a(n-14) +6374532886*a(n-15) -3311165152*a(n-16) -3325788742*a(n-17) +2609479826*a(n-18) -1073359914*a(n-19) +294380347*a(n-20) +4801462*a(n-21) -20168455*a(n-22) +4712116*a(n-23) -541926*a(n-24) -30393*a(n-25) +13302*a(n-26) -675*a(n-27)

A189182 Number of nX5 array permutations with each element making a single king move.

Original entry on oeis.org

0, 913, 47936, 10599449, 1339732352, 212852911361, 30863909708032, 4646631858824169, 689003645197185280, 102804050401764094481, 15300259132449601539840, 2279486758722355781575289
Offset: 1

Views

Author

R. H. Hardin Apr 18 2011

Keywords

Comments

Column 5 of A189186

Examples

			Some solutions for 3X5
..5..0..7..2..3....1..2..6..7..8....1..0..7..2..3....5..0..7..2..9
..1.10..6.14..4....0.12.11..3..4...11.10..6..4..8...11..1.12..4..3
.11.12.13..8..9....5.10.13.14..9....5.12.13.14..9....6.10..8.14.13
		

Formula

Empirical: a(n) = 114*a(n-1) +9317*a(n-2) -508866*a(n-3) -20910348*a(n-4) +704525664*a(n-5) +19358697488*a(n-6) -428304917728*a(n-7) -8879601094240*a(n-8) +129853332142720*a(n-9) +2190323609648896*a(n-10) -20574172318548480*a(n-11) -314606162399573504*a(n-12) +1598037911119250432*a(n-13) +27684023072295867392*a(n-14) -32346791780760006656*a(n-15) -1499684717324405215232*a(n-16) -3695155586595907993600*a(n-17) +46583697668722445025280*a(n-18) +290219562521732580573184*a(n-19) -593905480603069347004416*a(n-20) -8401632685478568054226944*a(n-21) -6539590799133706090971136*a(n-22) +96348126155652764263251968*a(n-23) +264417463146912245959622656*a(n-24) +12682495240626001051385856*a(n-25) -1744238428870058772105527296*a(n-26) -5693069153240876119306010624*a(n-27) -4564434382539862336212041728*a(n-28) -7943580772549846384227909632*a(n-29) -31586327988680906132309409792*a(n-30) +143766153982154846382418034688*a(n-31) +511623793291640778265865486336*a(n-32) +551178593322357659823759163392*a(n-33) +202854802351241365026179645440*a(n-34) -2905957648388000419056778739712*a(n-35) -3155337356481894282288074588160*a(n-36) -1042822458306188258889227567104*a(n-37) -2453052645713081078335951339520*a(n-38) +6778721456546169282766280065024*a(n-39) -1504306134813089239960437915648*a(n-40) -10352521978401584357617218617344*a(n-41) -3016565382617002414243131162624*a(n-42) +6150339155711867029113958039552*a(n-43) +10412506380362096054859393400832*a(n-44) +6806793406325595977933081542656*a(n-45) +2721724352275152477557442478080*a(n-46) +569526346586061594312736505856*a(n-47) -1477517748051341183691492687872*a(n-48) -1912761063129875165619605733376*a(n-49) -508156074249026659194220052480*a(n-50) +54066805553079381002532421632*a(n-51) +19155126199747274898514378752*a(n-52) +8773476904398267578136395776*a(n-53)
Contribution from Vaclav Kotesovec, Sep 01 2012: (Start)
Empirical: G.f.: -(1 - 114*x - 8404*x^2 + 452720*x^3 + 17538672*x^4 - 555155552*x^5 - 14506192288*x^6 + 297522132352*x^7 + 5810955247360*x^8 - 77927468499968*x^9 - 1230827400698880*x^10 + 10139196103077888*x^11 + 149566628136468480*x^12 - 557358281707810816*x^13 - 10843389941491863552*x^14 - 5310040642240905216*x^15 + 455986646377081831424*x^16 + 2047404517133439008768*x^17 - 9189873733410207891456*x^18 - 88268012596050635259904*x^19 - 6448621366095173910528*x^20 + 1378703975728569971113984*x^21 + 3088276968654707456212992*x^22 - 2470628711959669566865408*x^23 - 28767883420911499955142656*x^24 - 86514759183212419861184512*x^25 - 72211531466119535757623296*x^26 - 51267266293593481651683328*x^27 - 218962196765555625742565376*x^28 + 2451936235318107505927651328*x^29 + 7612818543369496887342137344*x^30 + 6898474527655796275847102464*x^31 + 1761382792028209537112604672*x^32 - 44763611093749388131983949824*x^33 - 48501822621203236978549587968*x^34 - 13094996240823567727225470976*x^35 - 40738215697505864447443337216*x^36 + 97748004267381040026423918592*x^37 - 23263335095947805743468511232*x^38 - 155382127530337186609388060672*x^39 - 39259801019630566464401965056*x^40 + 98652847390601076741272240128*x^41 + 161478541720281995669430861824*x^42 + 104198714253491857781627551744*x^43 + 40398299441776989086276386816*x^44 + 7350369579983929771701567488*x^45 - 23233990515836094630374408192*x^46 - 29533799958373725631238111232*x^47 - 7832192715239216204734267392*x^48 + 864382638942304568740937728*x^49 + 299415301166388498688638976*x^50 + 135059681410071853111705600*x^51)/( - 1 + 114*x + 9317*x^2 - 508866*x^3 - 20910348*x^4 + 704525664*x^5 + 19358697488*x^6 - 428304917728*x^7 - 8879601094240*x^8 + 129853332142720*x^9 + 2190323609648896*x^10 - 20574172318548480*x^11 - 314606162399573504*x^12 + 1598037911119250432*x^13 + 27684023072295867392*x^14 - 32346791780760006656*x^15 - 1499684717324405215232*x^16 - 3695155586595907993600*x^17 + 46583697668722445025280*x^18 + 290219562521732580573184*x^19 - 593905480603069347004416*x^20 - 8401632685478568054226944*x^21 - 6539590799133706090971136*x^22 + 96348126155652764263251968*x^23 + 264417463146912245959622656*x^24 + 12682495240626001051385856*x^25 - 1744238428870058772105527296*x^26 - 5693069153240876119306010624*x^27 - 4564434382539862336212041728*x^28 - 7943580772549846384227909632*x^29 - 31586327988680906132309409792*x^30 + 143766153982154846382418034688*x^31 + 511623793291640778265865486336*x^32 + 551178593322357659823759163392*x^33 + 202854802351241365026179645440*x^34 - 2905957648388000419056778739712*x^35 - 3155337356481894282288074588160*x^36 - 1042822458306188258889227567104*x^37 - 2453052645713081078335951339520*x^38 + 6778721456546169282766280065024*x^39 - 1504306134813089239960437915648*x^40 - 10352521978401584357617218617344*x^41 - 3016565382617002414243131162624*x^42 + 6150339155711867029113958039552*x^43 + 10412506380362096054859393400832*x^44 + 6806793406325595977933081542656*x^45 + 2721724352275152477557442478080*x^46 + 569526346586061594312736505856*x^47 - 1477517748051341183691492687872*x^48 - 1912761063129875165619605733376*x^49 - 508156074249026659194220052480*x^50 + 54066805553079381002532421632*x^51 + 19155126199747274898514378752*x^52 + 8773476904398267578136395776*x^53)
Asymptotic: 0.019129360759172571821 * 148.938932254396291243461581^n
(End)

A189183 Number of nX6 array permutations with each element making a single king move.

Original entry on oeis.org

1, 4777, 733465, 524539713, 212852911361, 108943637068673, 51019657551661825, 24772194881412281568, 11859612477133400173321, 5710233425140480749753825, 2743236264948075503280904473, 1319063462694864224288387507313
Offset: 1

Views

Author

R. H. Hardin Apr 18 2011

Keywords

Comments

Column 6 of A189186

Examples

			Some solutions for 3X6
..1..0..3..2..5.10....1..0..8..9..3..4....1..0..3..2..5..4....1..0..3..2..9.11
.12..6.15..4..9.17...12..6..2.10.17..5....7.12.15.14.11.16...13.12..7..4.16..5
.13..8..7.14.11.16...13.14..7.16.15.11...13..6..8..9.17.10....6.14.15..8.17.10
		

A189184 Number of nX7 array permutations with each element making a single king move.

Original entry on oeis.org

0, 24577, 9925824, 24377674329, 30863909708032, 51019657551661825, 76260881288534294528, 118756821701162151227761, 182058599536052537764772096, 280897765265782382194137678153
Offset: 1

Views

Author

R. H. Hardin Apr 18 2011

Keywords

Comments

Column 7 of A189186

Examples

			Some solutions for 3X7
..1..0..3..2.10..6.12....1..0..3..2..5..4.13....1..0..3..2..5..6.13
.14..7.17..4..5.20.19...14.16..8.11.18.19..6...14..9..8.17.18..4.20
.15..9..8.16.11.18.13...15..7..9.10.17.20.12....7.16.15.10.11.12.19
		

A189185 Number of nX8 array permutations with each element making a single king move.

Original entry on oeis.org

1, 127385, 142150545, 1162453545201, 4646631858824169, 24772194881412281568, 118756821701162151227761, 594579828469677562655346609, 2929346624538378869533780899145, 14529411775016363663957822341921161
Offset: 1

Views

Author

R. H. Hardin Apr 18 2011

Keywords

Comments

Column 8 of A189186

Examples

			Some solutions for 3X8
..1..0..3..2..5..4..7..6....1..0..3..2..5..4..7..6....1..0..3..2..5..4..7..6
.17.16..9.20.11.21.13.14...17.16..9.19.20.14.21.22...17.16.18.19.11.21.23.22
..8.10.19.18.12.22.23.15....8.18.10.12.11.13.23.15....8..9.10.20.12.13.14.15
		

A189178 Number of n X n array permutations with each element making a single king move.

Original entry on oeis.org

0, 9, 192, 251720, 1339732352, 108943637068673, 76260881288534294528, 594579828469677562655346609, 46342255378179654331792920815382272, 37825739518339601867409254032413815052514057
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2011

Keywords

Examples

			Some solutions for 3 X 3:
..4..0..5....4..0..1....1..2..4....3..0..5....1..4..5....4..2..1....3..0..1
..1..8..2....6..2..8....0..3..8....1..2..8....0..6..2....0..6..8....6..8..2
..3..6..7....3..5..7....7..6..5....4..6..7....3..8..7....3..5..7....4..5..7
		

Crossrefs

Diagonal of A189186.

Extensions

a(9)-a(10) from Pontus von Brömssen, Aug 28 2024
Showing 1-9 of 9 results.