A189216 Triangle T(n,k) read by rows of the smallest n-gonal number greater than 1 that is also k-gonal, or 0 if none exists, for 3 <= k <= n.
3, 36, 4, 210, 9801, 5, 6, 1225, 40755, 6, 55, 81, 4347, 121771, 7, 21, 225, 176, 11781, 297045, 8, 325, 9, 651, 325, 26884, 631125, 9, 10, 0, 12376, 1540, 540, 54405, 1212751, 10, 0, 196, 715, 0, 3186, 833, 100725, 2158695, 11, 105, 64, 12, 561, 18361, 5985, 1216, 174097, 3617601, 12
Offset: 3
Examples
The triangle begins: 3 36, 4 210, 9801, 5 6, 1225, 40755, 6 55, 81, 4347, 121771, 7 21, 225, 176, 11781, 297045, 8 325, 9, 651, 325, 26884, 631125, 9 10, 0, 12376, 1540, 540, 54405, 1212751, 10 0, 196, 715, 0, 3186, 833, 100725, 2158695, 11
Links
- Eric W. Weisstein, MathWorld: Polygonal Number
Programs
-
Mathematica
nn = 12; Clear[poly]; Do[poly[n] = Table[i*((n - 2)*i - (n - 4))/2, {i, 2, 20000}], {n, 3, nn}]; Flatten[Table[If[k == n, n, int = Intersection[poly[n], poly[k]]; If[int == {}, 0, int[[1]]]], {n, 3, nn}, {k, 3, n}]]
Comments