A189231 Extended Catalan triangle read by rows.
1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 2, 8, 3, 4, 1, 10, 5, 15, 4, 5, 1, 5, 30, 9, 24, 5, 6, 1, 35, 14, 63, 14, 35, 6, 7, 1, 14, 112, 28, 112, 20, 48, 7, 8, 1, 126, 42, 252, 48, 180, 27, 63, 8, 9, 1, 42, 420, 90, 480, 75, 270, 35, 80, 9, 10, 1, 462, 132, 990, 165, 825, 110, 385, 44, 99, 10, 11, 1
Offset: 0
Examples
The Laurent polynomials: C(0,x) = 0 C(1,x) = x - 1/x C(2,x) = x^2 + x - 1/x - 1/x^2 C(3,x) = x^3 + 2 x^2 + x - 1/x - 2/x^2 -1/x^3 Triangle T(n,k) = S(n+1,k+1) starts [0] 1, [1] 1, 1, [2] 1, 2, 1, [3] 3, 2, 3, 1, [4] 2, 8, 3, 4, 1, [5] 10, 5, 15, 4, 5, 1, [6] 5, 30, 9, 24, 5, 6, 1, [7] 35, 14, 63, 14, 35, 6, 7, 1, [0],[1],[2],[3],[4],[5],[6],[7]
Links
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, The lost Catalan numbers
Programs
-
Maple
A189231_poly := (n,x)-> `if`(n=0,0,(x+1/x)^(n-2)*(x-1/x)*(x+1/x+n-1)): seq(print([n],seq(coeff(expand(A189231_poly(n,x)),x,k),k=1..n)),n=1..9); A189231 := proc(n,k) option remember; `if`(k>n or k<0, 0, `if`(n=k, 1, A189231(n-1,k-1)+modp(n-k,2)*A189231(n-1,k)+A189231(n-1,k+1))) end: seq(print(seq(A189231(n,k),k=0..n)),n=0..9);
-
Mathematica
t[n_, k_] /; (k > n || k < 0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = t[n-1, k-1] + Mod[n-k, 2]*t[n-1, k] + t[n-1, k+1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2013 *)
Formula
Recurrence: If k>n or k<0 then T(n,k) = 0 else if n=k then T(n,k) = 1; otherwise T(n,k) = T(n-1,k-1) + ((n-k) mod 2)*T(n-1,k) + T(n-1,k+1).
S(n,k) = (k/n)* A162246(n,k) for n>0 where S(n,k) are the coefficients from the definition provided the triangle A162246 is indexed in Laurent style by the recurrence: if abs(k) > n then A162246(n,k) = 0 else if n = k then A162246(n,k) = 1 and otherwise A162246(n,k) = A162246(n-1,k-1)+ modp(n-k,2) * A162246(n-1,k) + A162246(n-1,k+1).
Comments