A189911
Row sums of the extended Catalan triangle A189231.
Original entry on oeis.org
1, 2, 4, 9, 18, 40, 80, 175, 350, 756, 1512, 3234, 6468, 13728, 27456, 57915, 115830, 243100, 486200, 1016158, 2032316, 4232592, 8465184, 17577014, 35154028, 72804200, 145608400, 300874500, 601749000, 1240940160, 2481880320, 5109183315, 10218366630
Offset: 0
-
A189911 := proc(n) local a,b,d; if n = 0 then 1 else
a := GAMMA(n-floor(n/2)); b := GAMMA(floor(n/2+3/2));
d := GAMMA(floor(n/2+1))^2; GAMMA(n+1)*(a*b+d)/(a*b*d) fi end: seq(A189911(n),n=0..32);
A189911 := proc(n) h:=irem(n,2); g:=iquo(n,2); (g+h+1)*binomial(2*g+h,g+h) end; # Peter Luschny, Oct 24 2013
-
a[n_] := Module[{q, r}, {q, r} = QuotientRemainder[n, 2]; (q+r+1)*Pochhammer[q+1, q+r]/(q+r)!]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jan 09 2014 *)
-
def A189911():
r, n = 1, 1
while True:
yield r
h = n//2
r *= 2 if is_even(n) else (h+2)*(2*h+1)/(h+1)^2
n += 1
a = A189911(); [next(a) for i in range(16)] # Peter Luschny, Oct 24 2013
A238452
Second column of the extended Catalan triangle A189231.
Original entry on oeis.org
0, 1, 2, 2, 8, 5, 30, 14, 112, 42, 420, 132, 1584, 429, 6006, 1430, 22880, 4862, 87516, 16796, 335920, 58786, 1293292, 208012, 4992288, 742900, 19315400, 2674440, 74884320, 9694845, 290845350, 35357670, 1131445440, 129644790, 4407922860, 477638700, 17194993200
Offset: 0
-
a := proc(n) option remember;
if n < 3 then return n fi;
if n mod 2 = 0 then return n*a(n-1) fi;
h := iquo(n,2); n*a(n-1)/(h*(h+2)) end:
seq(a(n), n=0..36);
-
t[n_, k_] /; (k > n || k < 0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] =
t[n - 1, k - 1] + Mod[n - k, 2] t[n - 1, k] + t[n - 1, k + 1];
a[n_] := t[n, 1];
Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jul 10 2019 *)
-
def A238452():
a = 1; n = 2
yield 0
while True:
yield a
a *= n
if is_odd(n):
a /= (n//2*(n//2+2))
n += 1
a = A238452(); [next(a) for n in range(36)]
A056040
Swinging factorial, a(n) = 2^(n-(n mod 2))*Product_{k=1..n} k^((-1)^(k+1)).
Original entry on oeis.org
1, 1, 2, 6, 6, 30, 20, 140, 70, 630, 252, 2772, 924, 12012, 3432, 51480, 12870, 218790, 48620, 923780, 184756, 3879876, 705432, 16224936, 2704156, 67603900, 10400600, 280816200, 40116600, 1163381400, 155117520, 4808643120, 601080390, 19835652870, 2333606220
Offset: 0
a(10) = 10!/5!^2 = trinomial(10,[5,0,5]);
a(11) = 11!/5!^2 = trinomial(11,[5,1,5]).
-
[(Factorial(n)/(Factorial(Floor(n/2)))^2): n in [0..40]]; // Vincenzo Librandi, Sep 11 2011
-
SeriesCoeff := proc(s,n) series(s(w,n),w,n+2);
convert(%,polynom); coeff(%,w,n) end;
a1 := proc(n) local k;
2^(n-(n mod 2))*mul(k^((-1)^(k+1)),k=1..n) end:
a2 := proc(n) option remember;
`if`(n=0,1,n^irem(n,2)*(4/n)^irem(n+1,2)*a2(n-1)) end;
a3 := n -> n!/iquo(n,2)!^2;
g4 := z -> BesselI(0,2*z)*(1+z);
a4 := n -> n!*SeriesCoeff(g4,n);
g5 := z -> (1+z/(1-4*z^2))/sqrt(1-4*z^2);
a5 := n -> SeriesCoeff(g5,n);
g6 := (z,n) -> (1+z^2)^n+n*z*(1+z^2)^(n-1);
a6 := n -> SeriesCoeff(g6,n);
a7 := n -> combinat[multinomial](n,floor(n/2),n mod 2,floor(n/2));
h := n -> binomial(n,floor(n/2)); # A001405
a8 := n -> ilcm(h(n-1),h(n));
F := [a1, a2, a3, a4, a5, a6, a7, a8];
for a in F do seq(a(i), i=0..32) od;
-
f[n_] := 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]; Array[f, 33, 0] (* Robert G. Wilson v, Aug 02 2010 *)
f[n_] := If[OddQ@n, n*Binomial[n - 1, (n - 1)/2], Binomial[n, n/2]]; Array[f, 33, 0] (* Robert G. Wilson v, Aug 10 2010 *)
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; (* or, twice faster: *) sf[n_] := n!/Quotient[n, 2]!^2; Table[sf[n], {n, 0, 32}] (* Jean-François Alcover, Jul 26 2013, updated Feb 11 2015 *)
-
a(n)=n!/(n\2)!^2 \\ Charles R Greathouse IV, May 02 2011
-
def A056040():
r, n = 1, 0
while True:
yield r
n += 1
r *= 4/n if is_even(n) else n
a = A056040(); [next(a) for i in range(36)] # Peter Luschny, Oct 24 2013
A274709
A statistic on orbital systems over n sectors: the number of orbitals which rise to maximum height k over the central circle.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 2, 3, 1, 10, 15, 5, 5, 9, 5, 1, 35, 63, 35, 7, 14, 28, 20, 7, 1, 126, 252, 180, 63, 9, 42, 90, 75, 35, 9, 1, 462, 990, 825, 385, 99, 11, 132, 297, 275, 154, 54, 11, 1, 1716, 3861, 3575, 2002, 702, 143, 13, 429, 1001, 1001, 637, 273, 77, 13, 1
Offset: 0
Triangle read by rows, n>=0. The length of row n is floor((n+2)/2).
[ n] [k=0,1,2,...] [row sum]
[ 0] [ 1] 1
[ 1] [ 1] 1
[ 2] [ 1, 1] 2
[ 3] [ 3, 3] 6
[ 4] [ 2, 3, 1] 6
[ 5] [ 10, 15, 5] 30
[ 6] [ 5, 9, 5, 1] 20
[ 7] [ 35, 63, 35, 7] 140
[ 8] [ 14, 28, 20, 7, 1] 70
[ 9] [126, 252, 180, 63, 9] 630
[10] [ 42, 90, 75, 35, 9, 1] 252
[11] [462, 990, 825, 385, 99, 11] 2772
[12] [132, 297, 275, 154, 54, 11, 1] 924
T(6, 2) = 5 because the five orbitals [-1, 1, 1, 1, -1, -1], [1, -1, 1, 1, -1, -1], [1, 1, -1, -1, -1, 1], [1, 1, -1, -1, 1, -1], [1, 1, -1, 1, -1, -1] raise to maximal height of 2 over the central circle.
Cf.
A008313,
A039599 (even rows),
A047072,
A056040 (row sums),
A057977 (col 0),
A063549 (col 0),
A112467,
A120730,
A189230 (odd rows aerated),
A189231,
A232500.
-
S := proc(n,k) option remember; `if`(k>n or k<0, 0, `if`(n=k, 1, S(n-1,k-1)+
modp(n-k,2)*S(n-1,k)+S(n-1,k+1))) end: T := (n,k) -> S(n,2*k);
seq(print(seq(T(n,k), k=0..iquo(n,2))), n=0..12);
-
from itertools import accumulate
# Brute force counting
def unit_orbitals(n):
sym_range = [i for i in range(-n+1, n, 2)]
for c in Combinations(sym_range, n):
P = Permutations([sgn(v) for v in c])
for p in P: yield p
def max_orbitals(n):
if n == 0: return [1]
S = [0]*((n+2)//2)
for u in unit_orbitals(n):
L = list(accumulate(u))
S[max(L)] += 1
return S
for n in (0..10): print(max_orbitals(n))
A238762
Triangle read by rows, generalized ballot numbers, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 2, 0, 3, 1, 0, 2, 0, 2, 0, 3, 0, 8, 0, 10, 1, 0, 3, 0, 5, 0, 5, 0, 4, 0, 15, 0, 30, 0, 35, 1, 0, 4, 0, 9, 0, 14, 0, 14, 0, 5, 0, 24, 0, 63, 0, 112, 0, 126, 1, 0, 5, 0, 14, 0, 28, 0, 42, 0, 42, 0, 6, 0, 35, 0, 112, 0, 252, 0, 420, 0, 462
Offset: 0
[n\k 0 1 2 3 4 5 6 7]
[0] 1,
[1] 0, 1,
[2] 1, 0, 1,
[3] 0, 2, 0, 3,
[4] 1, 0, 2, 0, 2,
[5] 0, 3, 0, 8, 0, 10,
[6] 1, 0, 3, 0, 5, 0, 5,
[7] 0, 4, 0, 15, 0, 30, 0, 35.
- D. E. Knuth, TAOCP, Vol. 4a, Section 7.2.1.6, Eq. 22, p. 451.
-
binom2 := proc(n, k) local h;
h := n -> (n-((1-(-1)^n)/2))/2;
n!/(h(n-k)!*h(n+k)!) end:
A238762 := proc(n, k) local a,b,c;
a := iquo(n+k+2+modp(n,2), 2);
b := iquo(n-k+2, 2);
c := modp(n+k+1, 2);
binom2(a,b)*b*c/a end:
seq(print(seq(A238762(n, k), k=0..n)), n=0..7);
# Alternativ:
ballot := proc(p, q) option remember;
if p = 0 and q = 0 then return 1 fi;
if p < 0 or p > q then return 0 fi;
ballot(p-2, q) + ballot(p, q-2);
if type(q, odd) then % + ballot(p-1, q-1) fi;
% end:
-
T[n_, k_] := T[n, k] = Which[k == 0 && n == 0, 1, k < 0 || k > n, 0, True, s = T[n, k - 2] + T[n - 2, k]; If[OddQ[n], s += T[n - 1, k - 1]]; s];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 10 2019, adapted from Sage code *)
-
@CachedFunction
def ballot(p, q):
if p == 0 and q == 0: return 1
if p < 0 or p > q: return 0
S = ballot(p-2, q) + ballot(p, q-2)
if q % 2 == 1: S += ballot(p-1, q-1)
return S
for q in range(8): [ballot(p, q) for p in (0..q)]
A212303
a(n) = n!/([(n-1)/2]!*[(n+1)/2]!) for n>0, a(0)=0, and where [ ] = floor.
Original entry on oeis.org
0, 1, 2, 3, 12, 10, 60, 35, 280, 126, 1260, 462, 5544, 1716, 24024, 6435, 102960, 24310, 437580, 92378, 1847560, 352716, 7759752, 1352078, 32449872, 5200300, 135207800, 20058300, 561632400, 77558760, 2326762800, 300540195, 9617286240, 1166803110, 39671305740
Offset: 0
-
A212303 := proc(n) if n mod 2 = 0 then n*binomial(n, iquo(n,2))/2 else binomial(n+1, iquo(n,2)+1)/2 fi end: seq(A212303(i), i=0..36);
-
a[n_?EvenQ] := n*Binomial[n, n/2]/2; a[n_?OddQ] := Binomial[n+1, Quotient[n, 2]+1]/2; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Feb 05 2014 *)
nxt[{n_,a_}]:={n+1,If[OddQ[n],a(n+1),(4a(n+1))/(n(n+2))]}; Join[{0}, Transpose[ NestList[ nxt,{1,1},40]][[2]]] (* Harvey P. Dale, Dec 20 2014 *)
-
def A212303():
yield 0
r, n = 1, 1
while True:
yield r
n += 1
r *= n if is_even(n) else 4*n/((n-1)*(n+1))
a = A212303(); [next(a) for i in range(36)]
A189230
Complementary Catalan triangle read by rows.
Original entry on oeis.org
0, 1, 0, 0, 2, 0, 3, 0, 3, 0, 0, 8, 0, 4, 0, 10, 0, 15, 0, 5, 0, 0, 30, 0, 24, 0, 6, 0, 35, 0, 63, 0, 35, 0, 7, 0, 0, 112, 0, 112, 0, 48, 0, 8, 0, 126, 0, 252, 0, 180, 0, 63, 0, 9, 0, 0, 420, 0, 480, 0, 270, 0, 80, 0, 10, 0, 462, 0, 990, 0, 825, 0, 385, 0, 99, 0, 11, 0
Offset: 0
Peter Luschny, May 01 2011
[0] 0,
[1] 1, 0,
[2] 0, 2, 0,
[3] 3, 0, 3, 0,
[4] 0, 8, 0, 4, 0,
[5] 10, 0, 15, 0, 5, 0,
[6] 0, 30, 0, 24, 0, 6, 0,
[7] 35, 0, 63, 0, 35, 0, 7, 0,
[0],[1],[2],[3],[4],[5],[6],[7]
-
A189230 := (n,k) -> A189231(n,k)*modp(n-k,2):
seq(print(seq(A189230(n,k),k=0..n)),n=0..11);
-
t[n_, k_] /; (k>n || k<0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = t[n-1, k-1] + Mod[n-k, 2] t[n-1, k] + t[n-1, k+1];
T[n_, k_] := t[n, k] Mod[n-k, 2];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Jean-François Alcover, Jun 24 2019 *)
Showing 1-7 of 7 results.
Comments