cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A238879 Row sums of the triangle of generalized ballot numbers A238762.

Original entry on oeis.org

1, 1, 2, 5, 5, 21, 14, 84, 42, 330, 132, 1287, 429, 5005, 1430, 19448, 4862, 75582, 16796, 293930, 58786, 1144066, 208012, 4457400, 742900, 17383860, 2674440, 67863915, 9694845, 265182525, 35357670, 1037158320, 129644790, 4059928950, 477638700, 15905368710
Offset: 0

Views

Author

Peter Luschny, Mar 06 2014

Keywords

Crossrefs

Programs

  • Maple
    A238879 := proc(n) option remember;
    if n < 2 then 1 else
       if n mod 2 = 0 then 1/(iquo(n,2)+2)
       else (2*n+4)/((n-1)*(n+5)) fi;
       % *(2*n+2)*A238879(n-2)
    fi end:
    seq(A238879(i), i = 0..30);
  • Sage
    def f():
        f, g, b, n = 1, 1, 1, 1
        while True:
            n += 1
            if b == 1:
                yield g
                g *= 2*(n+1)/(n//2+2)
            else:
                yield f
                f *= 4*(n+1)*(n+2)/((n-1)*(n+5))
            b = 1 - b
    A238879 = f(); [next(A238879) for n in range(31)]

Formula

a(2n) = A000108(n), a(2n+1) = A002054(n) (conjectured). - Ralf Stephan, Mar 14 2014

A238761 Subtriangle of the generalized ballot numbers, T(n,k) = A238762(2*k-1,2*n-1), 1<=k<=n, read by rows.

Original entry on oeis.org

1, 2, 3, 3, 8, 10, 4, 15, 30, 35, 5, 24, 63, 112, 126, 6, 35, 112, 252, 420, 462, 7, 48, 180, 480, 990, 1584, 1716, 8, 63, 270, 825, 1980, 3861, 6006, 6435, 9, 80, 385, 1320, 3575, 8008, 15015, 22880, 24310, 10, 99, 528, 2002, 6006, 15015, 32032, 58344, 87516, 92378
Offset: 1

Views

Author

Peter Luschny, Mar 05 2014

Keywords

Examples

			[n\k 1   2    3    4    5    6     7 ]
[1]  1,
[2]  2,  3,
[3]  3,  8,  10,
[4]  4, 15,  30,  35,
[5]  5, 24,  63, 112, 126,
[6]  6, 35, 112, 252, 420,  462,
[7]  7, 48, 180, 480, 990, 1584, 1716.
		

Crossrefs

Row sums are A002054.

Programs

  • Maple
    binom2 := proc(n, k) local h;
       h := n -> (n-((1-(-1)^n)/2))/2;
       n!/(h(n-k)!*h(n+k)!) end:
    A238761 := (n, k) -> binom2(n+k, n-k+1)*(n-k+1)/(n+k):
    seq(print(seq(A238761(n, k), k=1..n)), n=1..7);
  • Mathematica
    h[n_] := (n - ((1 - (-1)^n)/2))/2;
    binom2[n_, k_] := n!/(h[n-k]! h[n+k]!);
    T[n_, k_] := binom2[n+k, n-k+1] (n-k+1)/(n+k);
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2019, from Maple *)
  • Sage
    @CachedFunction
    def ballot(p, q):
        if p == 0 and q == 0: return 1
        if p < 0 or p > q: return 0
        S = ballot(p-2, q) + ballot(p, q-2)
        if q % 2 == 1: S += ballot(p-1, q-1)
        return S
    A238761 = lambda n, k: ballot(2*k-1, 2*n-1)
    for n in (1..7): [A238761(n, k) for k in (1..n)]

Formula

T(n,n) = A001700(n-1).
T(n,n-1) = A162551(n-1).

A323206 A(n, k) = hypergeometric([-k, k+1], [-k-1], n), square array read by ascending antidiagonals for n,k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 14, 1, 1, 5, 25, 67, 42, 1, 1, 6, 41, 190, 381, 132, 1, 1, 7, 61, 413, 1606, 2307, 429, 1, 1, 8, 85, 766, 4641, 14506, 14589, 1430, 1, 1, 9, 113, 1279, 10746, 55797, 137089, 95235, 4862, 1
Offset: 0

Views

Author

Peter Luschny, Feb 21 2019

Keywords

Comments

Conjecture: A(n, k) is odd if and only if n is even or (n is odd and k + 2 = 2^j for some j > 0).

Examples

			Array starts:
    [n\k 0  1    2     3       4        5         6           7  ...]
    [0]  1, 1,   1,    1,      1,       1,        1,          1, ... A000012
    [1]  1, 2,   5,   14,     42,     132,      429,       1430, ... A000108
    [2]  1, 3,  13,   67,    381,    2307,    14589,      95235, ... A064062
    [3]  1, 4,  25,  190,   1606,   14506,   137089,    1338790, ... A064063
    [4]  1, 5,  41,  413,   4641,   55797,   702297,    9137549, ... A064087
    [5]  1, 6,  61,  766,  10746,  161376,  2537781,   41260086, ... A064088
    [6]  1, 7,  85, 1279,  21517,  387607,  7312789,  142648495, ... A064089
    [7]  1, 8, 113, 1982,  38886,  817062, 17981769,  409186310, ... A064090
    [8]  1, 9, 145, 2905,  65121, 1563561, 39322929, 1022586105, ... A064091
         A001844 A064096 A064302  A064303   A064304   A064305  diag: A323209
.
Seen as a triangle (by reading ascending antidiagonals):
                               1
                              1, 1
                            1, 2, 1
                           1, 3, 5, 1
                        1, 4, 13, 14, 1
                      1, 5, 25, 67, 42, 1
                   1, 6, 41, 190, 381, 132, 1
		

Crossrefs

Diagonals: A323209 (main), A323208 (sup main), A323217 (sub main).
Sums of antidiagonals: A323207

Programs

  • Maple
    # The function ballot is defined in A238762.
    A := (n, k) -> add(ballot(2*j, 2*k)*n^j, j=0..k):
    for n from 0 to 6 do seq(A(n, k), k=0..9) od;
    # Or by recurrence:
    A := proc(n, k) option remember;
    if n = 1 then return `if`(k = 0, 1, (4*k + 2)*A(1, k-1)/(k + 2)) fi:
    if k < 2 then return [1, n+1][k+1] fi; n*(4*k - 2);
    ((%*(n - 1) - k - 1)*A(n, k-1) + %*A(n, k-2))/((n - 1)*(k + 1)) end:
    for n from 0 to 6 do seq(A(n, k), k=0..9) od;
    # Alternative:
    Arow := proc(n, len) # Function REVERT is in Sloane's 'Transforms'.
    [seq(1 + n*k, k=0..len-1)]; REVERT(%); seq((-1)^k*%[k+1], k=0..len-1) end:
    for n from 0 to 8 do Arow(n, 8) od;
  • Mathematica
    A[n_, k_] := Hypergeometric2F1[-k, k + 1, -k - 1, n];
    Table[A[n, k], {n, 0, 8}, {k, 0, 8}]
    (* Alternative: *)
    prev[f_, n_] := InverseSeries[Series[-x f, {x, 0, n}]]/(-x);
    f[n_, x_] := (1 + (n - 1) x)/((1 - x)^2);
    For[n = 0, n < 9, n++, Print[CoefficientList[prev[f[n, x], 8], x]]]
    (* Continued fraction: *)
    num[k_, n_] := If[k < 2, 1, If[k == 2, -x, -n x]];
    cf[n_, len_] := ContinuedFractionK[num[k, n], 1, {k, len + 2}];
    Arow[n_, len_] := Rest[CoefficientList[Series[cf[n, len], {x, 0, len}], x]];
    For[n = 0, n < 9, n++, Print[Arow[n, 8]]]
  • PARI
    {A(n,k) = polcoeff((1/x)*serreverse(x*((1+(n-1)*(-x))/((1-(-x))^2)+x*O(x^k))), k)}
    for(n=0, 8, for(k=0, 8, print1(A(n, k), ", ")); print())
  • Sage
    # Valid for n > 0.
    def genCatalan(n): return SR(1/(x- x^2*(1 - sqrt(1 - 4*x*n))/(2*x*n)))
    for n in (1..8): print(genCatalan(n).series(x).list())
    # Alternative:
    def pseudo_reversion(g, invsign=false):
        if invsign: g = g.subs(x=-x)
        g = g.shift(1)
        g = g.reverse()
        g = g.shift(-1)
        return g
    R. = PowerSeriesRing(ZZ)
    for n in (0..6):
        f = (1+(n-1)*x)/((1-x)^2)
        s = pseudo_reversion(f, true)
        print(s.list())
    

Formula

A(n, k) = [x^k] 1/(x - x^2*C(n*x)) if n > 0 and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the generating function of the Catalan numbers A000108.
A(n, k) = Sum_{j=0..k} (binomial(2*k-j, k) - binomial(2*k-j, k+1))*n^(k-j).
A(n, k) = Sum_{j=0..k} binomial(k + j, k)*(1 - j/(k + 1))*n^j (cf. A009766).
A(n, k) = 1 + Sum_{j=0..k-1} ((1+j)*binomial(2*k-j, k+1)/(k-j))*n^(k-j).
A(n, k) = (1/(2*Pi))*Integral_{x=0..4*n} (sqrt(x*(4*n-x))*x^k)/(1+(n-1)*x), n>0.
A(n, k) ~ ((4*n)^k/(Pi^(1/2)*k^(3/2)))*(1+1/(2*n-1))^2.
If we shift the series f with constant term 1 to the right, invert it with respect to composition and shift the result back to the left then we call this the 'pseudo reversion' of f, prev(f). Row n of the array gives the coefficients of the pseudo reversion of f = (1 + (n - 1)*x)/((1 - x)^2) with an additional inversion of sign. Note that f is not revertible. See also the Sage implementation below.
A(n, k) = [x^k] prev((1 + (n - 1)*(-x))/(1 - (-x))^2).
A(n, k) = [x^(k+1)] cf(n, x) where cf(n, x) = K_{i>=1} c(i)/b(i) in the notation of Gauß with b(i) = 1, c(1) = 1, c(2) = -x and c(i) = -n*x for i > 2.
For a recurrence see the Maple section.

A323208 a(n) = hypergeometric([-n - 1, n + 2], [-n - 2], n).

Original entry on oeis.org

1, 5, 67, 1606, 55797, 2537781, 142648495, 9549411950, 741894295369, 65620725560578, 6511108452179611, 716273662860469000, 86527644431076024637, 11387523335268377432565, 1621766490238904658104583, 248507974510512755641561366, 40769019250019155227631614225
Offset: 0

Views

Author

Peter Luschny, Feb 25 2019

Keywords

Crossrefs

Programs

  • Maple
    # The function ballot is defined in A238762.
    a := n -> add(ballot(2*j, 2*n+2)*n^j, j=0..n+1):
    seq(a(n), n=0..16);
  • Mathematica
    a[n_] := Hypergeometric2F1[-n - 1, n + 2, -n - 2, n];
    Table[a[n], {n, 0, 16}]

Formula

a(n) = A323206(n, n+1).
a(n) = Sum_{j=0..n+1} (binomial(2*(n+1)-j,n+1)-binomial(2*(n+1)-j,n+2))*n^(n+1-j).
a(n) = Sum_{j=0..n+1} binomial(n+1+j, n+1)*(1 - j/(n+2))*n^j.
a(n) = 1 + Sum_{j=0..n} ((1+j)*binomial(2*(n+1)-j, n+2)/(n+1-j))*n^(n+1-j).
a(n) = (1/(2*Pi))*Integral_{x=0..4*n} (sqrt(x*(4*n-x))*x^(n+1))/(1+(n-1)*x), n>0.
a(n) ~ (4^(n + 2)*n^(n + 3))/(sqrt(Pi)*(1 - 2*n)^2*(n + 1)^(3/2)).

A238452 Second column of the extended Catalan triangle A189231.

Original entry on oeis.org

0, 1, 2, 2, 8, 5, 30, 14, 112, 42, 420, 132, 1584, 429, 6006, 1430, 22880, 4862, 87516, 16796, 335920, 58786, 1293292, 208012, 4992288, 742900, 19315400, 2674440, 74884320, 9694845, 290845350, 35357670, 1131445440, 129644790, 4407922860, 477638700, 17194993200
Offset: 0

Views

Author

Peter Luschny, Mar 01 2014

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember;
      if n < 3 then return n fi;
      if n mod 2 = 0 then return n*a(n-1) fi;
      h := iquo(n,2); n*a(n-1)/(h*(h+2)) end:
    seq(a(n), n=0..36);
  • Mathematica
    t[n_, k_] /; (k > n || k < 0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] =
      t[n - 1, k - 1] + Mod[n - k, 2] t[n - 1, k] + t[n - 1, k + 1];
    a[n_] := t[n, 1];
    Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jul 10 2019 *)
  • Sage
    def A238452():
        a = 1; n = 2
        yield 0
        while True:
            yield a
            a *= n
            if is_odd(n):
                a /= (n//2*(n//2+2))
            n += 1
    a = A238452(); [next(a) for n in range(36)]

Formula

Definition: a(n) = binomial(n+1, floor(n/2)+1) / (floor(n/2)+2) if n is odd, and 2*binomial(n, floor(n/2)+1) otherwise.
a(n) = A189231(n, 1).
a(n) = A238762(n+1, n-1).
a(2*n) = A162551(n).
a(2*n+1) = A000108(n+1).
a(n) = A057977(n+1) - A057977(n)*((n+1) mod 2). - Peter Luschny, Aug 07 2016

A323207 a(n) = Sum_{k=0..n} hypergeometric([-k, k + 1], [-k - 1], n - k).

Original entry on oeis.org

1, 2, 4, 10, 33, 141, 752, 4825, 36027, 305132, 2879840, 29909421, 338479429, 4139716658, 54339861530, 761150445734, 11322139144239, 178116143657889, 2952831190016238, 51423702126549166, 938126972940647197, 17883424301972473339
Offset: 0

Views

Author

Peter Luschny, Feb 25 2019

Keywords

Crossrefs

Programs

  • Maple
    # The function ballot is defined in A238762.
    A323207 := n -> add(add(ballot(2*j, 2*k)*(n-k)^j, j=0..k), k=0..n):
    seq(A323207(n), n=0..21);
  • Mathematica
    a[n_] := Sum[Hypergeometric2F1[-k, k + 1, -k - 1, n - k], {k, 0, n}];
    Table[a[n], {n, 0, 21}]

Formula

a(n) = Sum_{k=0..n} A323206(n-k, k).
a(n) = Sum_{k=0..n} Sum_{j=0..k} A238762(2*j, 2*k)*(n-k)^j.
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} (binomial(2*(n-k)-j, n-k) - binomial(2*(n-k)-j, n-k+1))*k^(n-k-j).

A323217 a(n) = hypergeometric([-n, n + 1], [-n - 1], n + 1).

Original entry on oeis.org

1, 3, 25, 413, 10746, 387607, 17981769, 1022586105, 68964092542, 5384626548491, 477951767068986, 47546350648784341, 5240644323742274500, 634033030117301108127, 83540992651137240168361, 11908866726507685451458545
Offset: 0

Views

Author

Peter Luschny, Feb 25 2019

Keywords

Crossrefs

Programs

  • Maple
    # The function ballot is defined in A238762.
    a := n -> add(ballot(2*j, 2*n)*(n+1)^j, j=0..n):
    seq(a(n), n=0..16);
  • Mathematica
    a[n_] := Hypergeometric2F1[-n, n + 1, -n - 1, n + 1];
    Table[a[n], {n, 0, 16}]

Formula

a(n) = A323206(n+1, n).
a(n) = Sum_{j=0..n} (binomial(2*n-j, n) - binomial(2*n-j, n+1))*(n+1)^(n-j).
a(n) = Sum_{j=0..n} binomial(n+j, n)*(1 - j/(n + 1))*(n + 1)^j.
a(n) = 1 + Sum_{j=0..n-1} ((1+j)*binomial(2*n-j, n+1)/(n-j))*(n+1)^(n-j).
a(n) = (1/(2*Pi))*Integral_{x=0..4*(n+1)} (sqrt(x*(4*(n+1)-x))*x^n)/(1+n*x).
a(n) ~ (4^(n+1)*(n+1)^(n+2))/(sqrt(Pi)*(2*n+1)^2*n^(3/2)).

A238763 A Motzkin triangle read by rows, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 0, 4, 1, 0, 5, 0, 9, 0, 3, 0, 12, 0, 21, 1, 0, 9, 0, 30, 0, 51, 0, 4, 0, 25, 0, 76, 0, 127, 1, 0, 14, 0, 69, 0, 196, 0, 323, 0, 5, 0, 44, 0, 189, 0, 512, 0, 835, 1, 0, 20, 0, 133, 0, 518, 0, 1353, 0, 2188, 0, 6, 0, 70, 0, 392, 0, 1422, 0
Offset: 0

Views

Author

Peter Luschny, Mar 05 2014

Keywords

Comments

Similar to A020474 but with a different enumeration.
Compare with the definition of the generalized ballot numbers A238762.

Examples

			[n\k 0  1  2   3  4   5   6   7]
[0]  1,
[1]  0, 1,
[2]  1, 0, 2,
[3]  0, 2, 0, 4,
[4]  1, 0, 5, 0, 9,
[5]  0, 3, 0, 12, 0, 21,
[6]  1, 0, 9, 0, 30, 0, 51,
[7]  0, 4, 0, 25, 0, 76, 0, 127.
		

Crossrefs

Programs

  • Sage
    @CachedFunction
    def T(p, q):
        if p == 0 and q == 0: return 1
        if p < 0 or  p > q: return 0
        return T(p-2, q) + T(p-1, q-1) + T(p, q-2)
    [[T(p, q) for p in (0..q)] for q in (0..9)]

Formula

Definition: T(0, 0) = 1; T(p, q) = 0 if p < 0 or p > q; T(p, q) = T(p-2, q) + T(p-1, q-1) + T(p, q-2). (The notation is in the style of Knuth, TAOCP 4a (7.2.1.6)).
T(n, n) = A001006(n).
Sum_{0<=k<=n} T(n, k) = A005043(n+2).

A323209 a(n) = hypergeometric([-n, n + 1], [-n - 1], n).

Original entry on oeis.org

1, 2, 13, 190, 4641, 161376, 7312789, 409186310, 27272680705, 2110472708140, 186023930383501, 18401769878685172, 2018938571514794593, 243319689384354960300, 31955654188732155634341, 4542582850906442990797126, 694922224386422689648830465
Offset: 0

Views

Author

Peter Luschny, Feb 25 2019

Keywords

Crossrefs

Programs

  • Maple
    # The function ballot is defined in A238762.
    a := n -> add(ballot(2*k, 2*n)*n^k, k=0..n):
    seq(a(n), n=0..16);
  • Mathematica
    a[n_] := Hypergeometric2F1[-n, n + 1, -n - 1, n];
    Table[a[n], {n, 0, 14}]

Formula

a(n) = A323206(n, n).
a(n) = Sum_{j=0..n} (binomial(2*n-j, n) - binomial(2*n-j, n+1))*n^(n-j).
a(n) = Sum_{j=0..n} binomial(n+j, n)*(1 - j/(n + 1))*n^j.
a(n) = 1 + Sum_{j=0..n-1} ((1+j)*binomial(2*n-j, n+1)/(n-j))*n^(n-j).
a(n) = (1/(2*Pi))*Integral_{x=0..4*n} (sqrt(x*(4*n-x))*x^n)/(1+(n-1)*x), n>0.
a(n) ~ (4^(n + 1)*n^(n + 1/2))/(sqrt(Pi)*(1 - 2*n)^2).
Showing 1-9 of 9 results.