cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Didier Guillet

Didier Guillet's wiki page.

Didier Guillet has authored 2 sequences.

A228918 Alternating sum of inverse of increasing integers with a difference of 0, 1, 2, 3, ...: 1 - 1/2 + 1/4 - 1/7 + 1/11 - 1/16 + 1/22 - 1/29 + 1/37 + ... i.e., alternating series based on A226985.

Original entry on oeis.org

6, 6, 1, 5, 7, 0, 1, 9, 2, 0, 7, 3, 5, 8, 5, 1, 1, 2, 0, 4, 4, 5, 7, 3, 8, 9, 2, 8, 4, 6, 0, 7, 9, 3, 9, 5, 2, 1, 7, 6, 4, 2, 4, 6, 6, 5, 8, 9, 5, 5, 6, 9, 7, 9, 8, 6, 9, 1, 9, 8, 4, 8, 5, 4, 5, 0, 1, 8, 9, 5, 0, 9, 7, 9, 4, 2, 6, 0, 1, 7, 2, 0, 7, 5, 9, 5, 8, 8, 8, 7, 7, 9, 1, 1, 8, 6, 9, 3, 7, 2, 4, 4, 9, 2, 7, 9, 4, 8
Offset: 0

Author

Didier Guillet, Sep 08 2013

Keywords

Examples

			0.66157019207358511204457389...
		

Crossrefs

Programs

  • Maple
    c:= Sum( (-1)^k/(1+binomial(k+1, 2)), k=0..infinity):
    Re(evalf(c, 120));  # Alois P. Heinz, Sep 09 2013
  • Mathematica
    N[((-2 I) (LerchPhi[-1, 1, 1/2 - (I/2) Sqrt[7]] - LerchPhi[-1, 1, 1/2 + (I/2) Sqrt[7]]))/Sqrt[7], 99] (* Joerg Arndt, Sep 09 2013 *)
    -(2*Im[PolyGamma[(1-I*Sqrt[7])/4] - PolyGamma[(3-I*Sqrt[7])/4]])/Sqrt[7] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Sep 10 2013 *)
  • PARI
    default(realprecision,133); sumalt(k=1, 1/(1+k*(k-1)/2)*(-1)^(k+1))
    
  • PARI
    -(2*imag(psi((1-I*sqrt(7))/4)-psi((3-I*sqrt(7))/4)))/sqrt(7) \\ sumalt is faster; Charles R Greathouse IV, Sep 10 2013

Formula

See Mathematica program. - Joerg Arndt, Sep 09 2013

Extensions

More terms from Joerg Arndt, Sep 09 2013

A226985 Sum of inverse of increasing integers with a difference of 0, 1, 2, 3, ...: 1 + 1/2 + 1/4 + 1/7 + 1/11 + 1/16 + 1/22 + 1/29 + 1/37 + ....

Original entry on oeis.org

2, 3, 7, 3, 6, 5, 4, 6, 7, 5, 4, 4, 0, 1, 0, 7, 7, 6, 4, 3, 2, 1, 6, 8, 6, 1, 2, 2, 2, 3, 7, 4, 3, 2, 4, 5, 1, 9, 1, 3, 8, 0, 5, 9, 0, 9, 4, 0, 6, 7, 1, 2, 0, 2, 9, 6, 7, 3, 3, 1, 3, 3, 8, 9, 1, 2, 5, 1, 1, 3, 6, 4, 7, 1, 0, 4, 5, 9, 2, 1, 3, 8, 9, 4, 1, 6, 3, 9, 7, 6, 6, 8, 2, 7, 8, 2, 9, 6, 7, 7, 5, 3, 3, 3, 3, 9
Offset: 1

Author

Didier Guillet, Jun 25 2013

Keywords

Comments

This is a convergent series since the denominator is quadratic.
We can note that tanh(sqrt(7)*Pi/2) = 0.9995... which is close to 1 by 0.05% so this constant is very close to 2*Pi/sqrt(7). - Didier Guillet, Jul 12 2013

Examples

			2.3736546754401077643216861222374324519138059094067120296733133891251...
		

Crossrefs

Cf. A000124.

Programs

Formula

Sum_{k >= 1} 1/(1+k*(k-1)/2).
It equals 2*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7). - Giovanni Resta, Jun 26 2013

Extensions

a(12)-a(87) from Giovanni Resta, Jun 26 2013