A189274 Number of nX3 array permutations with each element not moved or moved diagonally or antidiagonally by one.
1, 9, 45, 225, 1125, 5625, 28125, 140625, 703125, 3515625, 17578125, 87890625, 439453125, 2197265625, 10986328125, 54931640625, 274658203125, 1373291015625, 6866455078125, 34332275390625, 171661376953125, 858306884765625, 4291534423828125, 21457672119140625
Offset: 1
Keywords
Examples
Some solutions for 4X3 ..0..1..4....0..1..4....4..5..2....4..1..2....0..5..2....0..5..2....0..5..2 ..3..2..5....3..2..5....3..0..1....3..0..5....3..8..1....7..4..1....3..4..1 .10.11..8....6..7..8...10.11..8....6..9.10....6.11..4...10..3..8....6..7..8 ..9..6..7....9.10.11....9..6..7....7..8.11....9.10..7....9..6.11....9.10.11
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (5).
Crossrefs
Cf. A270567.
Formula
Empirical: a(n) = 5*a(n-1) for n>2
Apparently, the O.g.f. is x*(1+4x)/(1-5x). - Philippe Deléham, Feb 25 2012
Apparently : a(n) = Sum_{k, 1<=k<=n} A207628(n,k)*2^(k-1). - Philippe Deléham, Feb 25 2012
Comments