A203835 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements.
45, 225, 225, 1125, 1971, 1125, 5625, 17289, 17289, 5625, 28125, 151659, 270333, 151659, 28125, 140625, 1330353, 4238721, 4238721, 1330353, 140625, 703125, 11669859, 66490965, 119606211, 66490965, 11669859, 703125, 3515625, 102368025
Offset: 1
Examples
Some solutions for n=4 k=3 ..0..2..0..1....2..1..0..0....0..1..2..0....0..0..2..0....2..1..0..2 ..2..0..1..0....1..1..1..0....1..2..2..2....0..2..2..2....2..2..1..0 ..0..2..0..1....2..1..2..1....0..1..2..2....1..0..2..2....1..2..2..1 ..2..0..0..0....2..2..2..2....0..0..1..2....2..1..0..2....0..1..2..2 ..2..2..0..1....1..2..1..2....2..0..0..1....1..2..1..0....2..0..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..144
Crossrefs
Column 1 is A189274(n+2)
Formula
Empirical for column k:
k=1: a(n) = 9*5^n
k=2: a(n) = 9*a(n-1) -2*a(n-2)
k=3: a(n) = 19*a(n-1) -54*a(n-2) +32*a(n-3)
k=4: a(n) = 31*a(n-1) -24*a(n-2) -1612*a(n-3) +3816*a(n-4) +1152*a(n-5) -2784*a(n-6) +256*a(n-7)
k=5: (order 12 recurrence)
k=6: (order 28 recurrence)
k=7: (order 54 recurrence)
Comments