cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A189284 Number of permutations p of 1,2,...,n satisfying p(i+5)-p(i)<>5 for all 1<=i<=n-5.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 696, 4572, 34260, 290328, 2751480, 28686024, 328764732, 4106158164, 55495145304, 806797105320, 12554890849992, 208164423163908, 3663256621120548, 68188490015132040, 1338490745511631080, 27630826605742438968
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2011

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[5,5] on an n X n chessboard.

Crossrefs

Formula

Asymptotics (V. Kotesovec, Mar 2011): a(n)/n! ~ (1 + 9/n + 20/n^2)/e.

Extensions

Terms a(25)-a(26) from Vaclav Kotesovec, Apr 20 2012

A189285 Number of permutations p of 1,2,...,n satisfying p(i+6)-p(i)<>6 for all 1<=i<=n-6.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4920, 37488, 319644, 3033264, 31784280, 364902480, 4538652840, 61102571376, 885045657564, 13722397569072, 226742901078120, 3977354871110160, 73816786920489720, 1444940702597713008, 29750236302549282948
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2011

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[6,6] on an n X n chessboard.

Crossrefs

Formula

Asymptotics (V. Kotesovec, Mar 2011): a(n)/n! ~ (1 + 11/n + 30/n^2)/e.
Generally (for this sequence is d=6): 1/e*(1+(2d-1)/n+d*(d-1)/n^2).

Extensions

Terms a(23)-a(24) from Vaclav Kotesovec, Apr 21 2012

A189846 Number of ways to place n nonattacking composite pieces rook + semi-rider[4,4] on an n X n chessboard.

Original entry on oeis.org

1, 2, 6, 24, 114, 628, 4062, 30360, 251658, 2308648, 23351268, 259031232, 3091784268, 39697601392, 546982720164, 8064677125440
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 29 2011

Keywords

Comments

a(n) is also number of permutations p of 1,2,...,n satisfying p(j+4k)-p(j)<>4k for all j>=1, k>=1, j+4k<=n
For information about semi-pieces see semi-bishop (A187235) and semi-queen (A099152).

Crossrefs

Showing 1-3 of 3 results.