cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189318 Expansion of 5*(1-2*x)/(1-3*x-2*x^2+4*x^3).

Original entry on oeis.org

5, 5, 25, 65, 225, 705, 2305, 7425, 24065, 77825, 251905, 815105, 2637825, 8536065, 27623425, 89391105, 289275905, 936116225, 3029336065, 9803137025, 31723618305, 102659784705, 332214042625, 1075067224065, 3478990618625, 11258250133505
Offset: 0

Views

Author

L. Edson Jeffery, Apr 20 2011

Keywords

Comments

(Start) Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,4)=
(0 0 0 0 1)
(0 0 0 2 0)
(0 0 2 0 1)
(0 2 0 2 0)
(2 0 2 0 1).
Then a(n)=Trace(A^n). (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix A_(N,r) (0

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[5(1-2x)/(1-3x-2x^2+4x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,2,-4},{5,5,25},30] (* Harvey P. Dale, Jun 02 2014 *)
  • PARI
    Vec(5*(1-2*x)/(1-3*x-2*x^2+4*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012

Formula

G.f.: 5*(1-2*x)/(1-3*x-2*x^2+4*x^3).
a(n)=3*a(n-1)+2*a(n-2)-4*a(n-3), n>3, a(0)=5, a(1)=5, a(2)=25, a(3)=65.
a(n)=Sum_{k=1..5} ((w_k)^4-3*(w_k)^2+1)^n, w_k=2*cos((2*k-1)*Pi/10).
a(n)=1+2*(1-Sqrt(5))^n+2*(1+Sqrt(5))^n.
a(n)=5*A052899(n).