cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189374 Expansion of 1/((1-x)^5*(x^2+x+1)^3).

Original entry on oeis.org

1, 2, 3, 7, 11, 15, 25, 35, 45, 65, 85, 105, 140, 175, 210, 266, 322, 378, 462, 546, 630, 750, 870, 990, 1155, 1320, 1485, 1705, 1925, 2145, 2431, 2717, 3003, 3367, 3731, 4095, 4550, 5005, 5460, 6020, 6580, 7140, 7820
Offset: 0

Views

Author

Johannes W. Meijer, Apr 29 2011

Keywords

Comments

The Ca1(n) and Ze3(n) triangle sums of A139600 lead to the sequence given above, see the formulas. For the definitions of these triangle sums see A180662.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if` (n<4, [1, 2, 3, 7][n+1], (2*a(n-1) +2*a(n-2) +(8+n) *a(n-3))/n) end: seq (a(n), n=0..50);

Formula

a(n) = (2*a(n-1) + 2*a(n-2) + (8+n)*a(n-3))/n with a(0)=1, a(1)=2, a(2)=3 and a(3)=7.
a(n) = sum(A011779(n-k)*A049347(k), k=0..n).
Ca1(n) = A189374(n-3) - A189374(n-4) - A189374(n-6) + 2*A189374(n-7).
Ze3(n) = 2*A189374(n-3) - A189374(n-4) - 2*A189374(n-6) + 5*A189374(n-7) with A189374(n)=0 for n <= -1.
a(n) = (floor(n/3)+1)*(floor(n/3)+2)*(floor(n/3)+3)*(3*floor(n/3)+4*(4-(3*floor((n+3)/3)-n)))/24. - Luce ETIENNE, Jun 29 2015