cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A189413 Number of convex quadrilaterals on an n X n grid (or geoboard).

Original entry on oeis.org

0, 1, 70, 1038, 7398, 35727, 130768, 400116, 1062016, 2531001, 5529310, 11272710, 21639022, 39559591, 69283632, 116910052, 190977408, 303286461, 469431366, 710400658, 1053055398, 1532253131, 2192246528, 3088876728, 4290532688, 5882825641, 7969711934, 10677299074, 14156978846, 18591603883, 24195121104
Offset: 1

Views

Author

Martin Renner, Apr 21 2011

Keywords

Comments

If four points are chosen at random from an n X n grid, the probability that they form a convex quadrilateral approaches 25/36 as n increases, by Sylvester's Four-Point Theorem (see the link). Thanks to Ed Pegg Jr for this comment. - N. J. A. Sloane, Jun 15 2020

Crossrefs

This is the main diagonal of A334711.

Extensions

a(6) - a(22) from Nathaniel Johnston, Apr 25 2011
Terms beyond a(22) from Tom Duff. - N. J. A. Sloane, Jun 23 2020

A175383 Number of complete quadrangles on an n X n grid (or geoplane).

Original entry on oeis.org

0, 1, 78, 1278, 9498, 47331, 175952, 545764, 1461672, 3507553, 7701638, 15773526, 30375194, 55695587, 97777392, 165310348, 270478344, 430196181, 666685134, 1010083690, 1498720098, 2182544223
Offset: 1

Views

Author

Martin Renner, Apr 19 2011

Keywords

Comments

A complete quadrangle is a set of four points, no three collinear, and the six lines which join them.
Number of ways to arrange 4 indistinguishable points on an n X n square grid so that no three points are collinear at any angle. Column 4 of A194193. - R. H. Hardin, Aug 18 2011

Examples

			From _R. H. Hardin_, Aug 18 2011: (Start)
Some solutions for 3 X 3:
  0 1 1   1 1 0   1 0 1   0 1 1   0 0 0   1 1 0   1 1 0
  1 0 0   0 0 0   1 0 0   1 1 0   1 1 0   0 0 1   1 0 0
  1 0 0   1 0 1   0 0 1   0 0 0   0 1 1   0 1 0   0 1 0
(End)
		

Formula

a(n) = A189345(n) - A189346(n) - A178256(n).
a(n) = (1/3)*A189412(n) + A189413(n).

Extensions

a(6)-a(22) from Nathaniel Johnston, Apr 25 2011
a(7)-a(22) corrected by Nathaniel Johnston, based on another correction by Michal Forišek, Sep 06 2011

A189414 Number of quadrilaterals on an n X n grid (or geoboard).

Original entry on oeis.org

0, 1, 94, 1758, 13698, 70539, 266320, 837060, 2260984, 5460657, 12046294, 24775158, 47847538, 87967579, 154764912, 262110940, 429480216, 684015621, 1061192670, 1609449754, 2390049498, 3483126407
Offset: 1

Views

Author

Martin Renner, Apr 21 2011

Keywords

Crossrefs

Formula

a(n) = A189412(n) + A189413(n).

Extensions

a(6) - a(22) from Nathaniel Johnston, Apr 25 2011
a(7) - a(22) corrected by Michal Forisek, Sep 06 2011

A334581 Number of ways to choose 3 points that form an equilateral triangle from the A000292(n) points in a regular tetrahedral grid of side length n.

Original entry on oeis.org

0, 0, 4, 24, 84, 224, 516, 1068, 2016, 3528, 5832, 9256, 14208, 21180, 30728, 43488, 60192, 81660, 108828, 142764, 184708, 236088, 298476, 373652, 463524, 570228, 696012, 843312, 1014720, 1213096, 1441512, 1703352, 2002196, 2341848, 2726400, 3160272, 3648180
Offset: 0

Views

Author

Peter Kagey, May 06 2020

Keywords

Comments

a(n) >= 4 * A269747(n).
a(n) >= 4 * A000389(n+3) = A210569(n+2).
a(n) >= 4 * (n-1) + 4 * a(n-1) - 6 * a(n-2) + 4 * a(n-3) - a(n-4) for n >= 4.

Crossrefs

Cf. A000332 (equilateral triangles in triangular grid), A269747 (regular tetrahedra in a tetrahedral grid), A102698 (equilateral triangles in cube), A103158 (regular tetrahedra in cube).

A334881 Number of squares in 3-dimensional space whose four vertices have coordinates (x,y,z) in the set {1,...,n}.

Original entry on oeis.org

0, 0, 6, 54, 240, 810, 2274, 5304, 10752, 19992, 34854, 57774, 91200, 139338, 206394, 296832, 417120, 575556, 779238, 1037514, 1359792, 1760694, 2251362, 2845140, 3554976, 4404876, 5416278, 6605946, 7996896, 9621678, 11500962, 13667772, 16143552, 18973608, 22190406
Offset: 0

Views

Author

Peter Kagey, May 14 2020

Keywords

Comments

a(n) >= 3*n*A002415(n).

Examples

			For n = 5, one such square has vertex set {(2,1,1), (5,4,1), (4,5,5), (1,2,5)}.
		

Crossrefs

Cf. A002415 (squares in square grid), A098928 (cubes in cube grid).

Extensions

a(7)-a(12) from Pontus von Brömssen, May 15 2020
a(13)-a(20) from Peter Kagey, Jul 29 2020 via Mathematics Stack Exchange link
Terms a(21) and beyond from Zachary Kaplan, Sep 01 2020, via Mathematics Stack Exchange link

A173502 Number of concave kites (darts or arrowheads) on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 8, 64, 292, 916, 2344, 5048, 10096, 18296, 31400, 50752, 79308, 118876, 173768, 246096, 342256, 465064, 622904, 818552, 1063756, 1361564, 1725432, 2159384, 2682944, 3298568, 4027776, 4873600
Offset: 1

Views

Author

Martin Renner, Apr 29 2011

Keywords

Examples

			a(1) = 0, since there is only one point on a 1 X 1 grid.
a(2) = 0, since the four points on a 2 X 2 grid build a convex quadrilateral.
a(3) = 8, since there are two possible forms of darts on a 3 X 3 grid, each can appear in four rotations.
		

Crossrefs

Extensions

a(7)-a(28) from Nathaniel Johnston, Apr 29 2011
Showing 1-6 of 6 results.