cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A188106 Triangle T(n,k) with the coefficient [x^k] of 1/(1-2*x-x^2+x^3)^(n-k+1) in row n, column k.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 14, 11, 1, 8, 27, 42, 25, 1, 10, 44, 101, 119, 56, 1, 12, 65, 196, 342, 322, 126, 1, 14, 90, 335, 770, 1080, 847, 283, 1, 16, 119, 526, 1495, 2772, 3248, 2180, 636, 1, 18, 152, 777, 2625, 6032, 9366, 9414, 5521, 1429, 1, 20, 189, 1096, 4284, 11718, 22590, 30148, 26517, 13804, 3211
Offset: 0

Views

Author

L. Edson Jeffery, Mar 20 2011

Keywords

Comments

Modified versions of the generating function for D(0)={1,2,5,11,...}=A006054(m+2), m=0,1,2,..., are related to rhombus substitution tilings (see A187068, A187069 and A187070). The columns of the triangle have generating functions 1/(1-x), 2*x/(1-x)^2, x^2*(5-x)/(1-x)^3, x^3*(11-2*x-x^2)/(1-x)^4, x^4*(25-6*x-3*x^2)/(1-x)^5, ..., for which the sum of the signed coefficients in the n-th numerator equals 2^n. The diagonals {1,2,5,...}, {1,4,14,...}, ..., are generated by successive series expansion of F(n+1,x), n=0,1,..., where F(n,x)=1/(1-2*x-x^2+x^3)^n. For example, the second diagonal is {T{1,0},T{2,1},...}={1,4,14,...}=A189426, for which successive partial sums give A189427 (excluding the zero terms). Moreover, the diagonals correspond to successive convolutions of A006054 (= the first diagonal) with itself.

Examples

			1;
1, 2;
1, 4, 5;
1, 6, 14, 11;
1, 8, 27, 42, 25;
1, 10, 44, 101, 119, 56;
1, 12, 65, 196, 342, 322, 126;
1, 14, 90, 335, 770, 1080, 847, 283;
1, 16, 119, 526, 1495 ...
		

Crossrefs

Programs

  • Maple
    A188106 := proc(n,k) 1/(1-2*x-x^2+x^3)^(n-k+1) ; coeftayl(%,x=0,k) ; end proc:
    seq(seq(A188106(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Mar 22 2011

Formula

Sum_{k=0..n} T(n,k) = A033505(n).
T(n,0) = 1.
T(n,2) = A014106(n-1).
T(n,3) = (n-2)*(4*n^2+2*n-9)/3.
T(n,4) = (n-2)*(n-3)*(2*n+7)*(2*n-3)/6.

Extensions

a(43) and following corrected by Georg Fischer, Oct 14 2023

A189426 Expansion of (x^2)/(1-2*x-x^2+x^3)^2.

Original entry on oeis.org

0, 0, 1, 4, 14, 42, 119, 322, 847, 2180, 5521, 13804, 34160, 83818, 204204, 494494, 1191227, 2856666, 6823334, 16240714, 38534657, 91175154, 215179125, 506670394, 1190534467, 2792076392, 6536567296, 15278103876, 35656587624, 83101366684
Offset: 0

Views

Author

L. Edson Jeffery, Apr 22 2011

Keywords

Comments

Convolution of A006054={0,0,1,2,5,11,25,56,126,...} with itself.
For n=0,1,2,..., partial sums are given by Sum_{k=0..n} a(k)=A189427(n), where A189427={0,0,1,5,19,61,180,...}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2/(1-2x-x^2+x^3)^2,{x,0,40}],x] (* or *) LinearRecurrence[{4,-2,-6,3,2,-1},{0,0,1,4,14,42},40] (* Harvey P. Dale, Feb 29 2012 *)
  • PARI
    Vec((x^2)/(1-2*x-x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

G.f.: (x^2)/(1-2*x-x^2+x^3)^2.
a(n)=4*a(n-1)-2*a(n-2)-6*a(n-3)+3*a(n-4)+2*a(n-5)-a(n-6), n>=6.
Showing 1-2 of 2 results.