A189536 The smallest prime p such that tau(p-1) + tau(p+1) = prime(n), or 0 if no such prime exists; where tau(k) is the number of divisors of k.
0, 2, 3, 5, 17, 37, 101, 0, 401, 3137, 4357, 62501, 21317, 16901, 1008017, 15877, 1020101, 33857, 69697, 14401, 331777, 78401, 32401, 57601, 828101, 40195601, 32080897, 3326977, 876097, 476101, 199374401, 4326401, 14440001, 1299601, 33918977, 3459601, 2647719937, 145540097
Offset: 1
Keywords
Programs
-
Mathematica
nn = 25; t = Table[-1, {nn}]; t[[1]] = 0; t[[8]] = 0; cnt = 2; p = 1; While[cnt < nn, p = NextPrime[p]; s = DivisorSigma[0, p - 1] + DivisorSigma[0, p + 1]; If[PrimeQ[s], i = PrimePi[s]; If[i <= nn && t[[i]] == -1, t[[i]] = p; cnt++]]]; t (* T. D. Noe, Apr 28 2011 *)
Extensions
a(26)-a(38) from Amiram Eldar, Jan 25 2025
Comments