cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189553 Irregular triangle in which row n contains numbers x such that x'=n, where x' denotes the arithmetic derivative (A003415).

Original entry on oeis.org

4, 6, 9, 10, 15, 14, 21, 25, 8, 35, 22, 33, 49, 26, 12, 39, 55, 65, 77, 34, 51, 91, 18, 38, 57, 85, 121, 20, 95, 119, 143, 46, 69, 133, 169, 27, 115, 187, 161, 209, 221, 30, 58, 16, 28, 87, 247, 62, 93, 145, 253, 289, 155, 203, 299, 323, 217, 361, 45, 74
Offset: 4

Views

Author

T. D. Noe, Apr 23 2011

Keywords

Comments

Row 0 contains 0 and 1. Row 1 contains all primes. Rows 2 and 3 are empty. Hence, we start this table with row 4. The length of row n is A099302(n). The first term in row n is A098699(n). The last term is A099303(n). Row n is the set I(n) in the paper by Ufnarovski and Ahlander. They show that all terms in row n are <= (n/2)^2. The upper bound is attained when n = 2p, where p is a prime.

Examples

			The triangle begins
4
6
9
10
15
14
21, 25
none
8, 35
22
33, 49
26
12, 39, 55
		

References

Crossrefs

Programs

  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; nn = 100; d = Array[dn, (nn/2)^2]; Table[Flatten[Position[d, n]], {n, 4, nn}]