A189560 Least odd number k such that x' = k has n solutions, where x' is the arithmetic derivative (A003415) of x.
3, 5, 21, 75, 151, 371, 671, 791, 311, 551, 1271, 1391, 1031, 2471, 2231, 4271, 1991, 3191, 5351, 7871, 7751, 7031, 8951, 8711, 11831, 5591, 19631, 10391, 15791, 20711, 30071, 17111, 30551, 27191, 40031, 31391, 52631, 49271, 35591, 42311, 50951, 92231
Offset: 0
Keywords
References
- See A003415.
Links
- Donovan Johnson, Table of n, a(n) for n = 0..200
Programs
-
Python
from itertools import count from sympy import factorint def A189560(n): if n == 0: return 3 mdict = {} for k in count(1,2): c = 0 for m in range(1,(k**2>>2)+1): if m not in mdict: mdict[m] = sum((m*e//p for p,e in factorint(m).items())) if mdict[m] == k: c += 1 if c > n: break if c == n: return k # Chai Wah Wu, Sep 12 2022
Formula
a(n) is the least odd k such that A099302(k) = n.
Comments