cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189593 Number of permutations of 1..n with displacements restricted to {-6,-5,-4,-3,-2,0,1}.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 21, 36, 62, 108, 188, 326, 565, 980, 1700, 2949, 5116, 8875, 15395, 26705, 46325, 80360, 139400, 241816, 419476, 727661, 1262267, 2189644, 3798357, 6588977, 11429841, 19827246, 34394152, 59663238, 103497303, 179535876
Offset: 1

Views

Author

R. H. Hardin, Apr 24 2011

Keywords

Comments

a(n+1) is the number of multus bitstrings of length n with no runs of 7 ones. - Steven Finch, Mar 25 2020

Examples

			Some solutions for n=14:
..1....4....3....1....4....5....1....1....3....1....1....4....1....1....1....3
..5....1....1....5....1....1....5....7....1....2....2....1....5....4....7....1
..2....2....2....2....2....2....2....2....2....5....7....2....2....2....2....2
..3....3....4....3....3....3....3....3....4....3....3....3....3....3....3....4
..4....8....7....4....5....4....4....4...10....4....4....5....4....5....4....7
..6....5....5....6....6....6...11....5....5....8....5...10....6....9....5....5
..7....6....6...10....7....7....6....6....6....6....6....6...11....6....6....6
.10....7...10....7....8...11....7....8....7....7....8....7....7....7....8...12
..8....9....8....8...13....8....8....9....8...13....9....8....8....8....9....8
..9...14....9....9....9....9....9...10....9....9...14....9....9...14...12....9
.13...10...11...11...10...10...10...11...14...10...10...11...10...10...10...10
.11...11...14...14...11...14...14...14...11...11...11...12...12...11...11...11
.12...12...12...12...12...12...12...12...12...12...12...13...13...12...13...13
.14...13...13...13...14...13...13...13...13...14...13...14...14...13...14...14
		

Formula

Empirical: a(n) = a(n-1) +a(n-3) +a(n-4) +a(n-5) +a(n-6) +a(n-7).
Empirical g.f.: x*(1 + x^2)*(1 + x^3 + x^4) / ((1 - x + x^2)*(1 - x^2 - 2*x^3 - 2*x^4 - x^5)). - Colin Barker, May 02 2018