cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189711 Number of non-monotonic functions from [k] to [n-k].

Original entry on oeis.org

2, 10, 8, 28, 54, 22, 60, 190, 204, 52, 110, 490, 916, 676, 114, 182, 1050, 2878, 3932, 2118, 240, 280, 1988, 7278, 15210, 16148, 6474, 494, 408, 3444, 15890, 45738, 77470, 65210, 19576, 1004, 570, 5580, 31192, 115808, 278358, 389640, 261708, 58920, 2026, 770, 8580, 56484, 258720, 820118, 1677048, 1951700, 1048008, 176994, 4072, 1012, 12650, 96006, 525444, 2090296, 5758802, 10073698, 9763628, 4193580, 531262, 8166
Offset: 5

Views

Author

Dennis P. Walsh, Apr 25 2011

Keywords

Comments

Triangle T(n,k), 3<=k<=n-2, given by (n-k)^k-2*C(n-1,k)+(n-k) is derived using inclusion/exclusion. The triangle contains several other listed sequences: T(2n,n) is sequence A056174(n), number of monotonic functions from [n] to [n]; T(n+2,n) is sequence A005803(n), second-order Eulerian numbers; and T(n,3) is A006331(n-4), maximum accumulated number of electrons at energy level n.

Examples

			Triangle T(n,k) begins
  n\k    3     4     5     6     7     8     9
   5     2
   6    10     8
   7    28    54    22
   8    60   190   204    52
   9   110   490   916   676   114
  10   182  1050  2878  3932  2118   240
  11   280  1988  7278 15210 16148  6474   494
  ...
For n=6 and k=4, T(6,4)=8 since there are 8 non-monotonic functions f from [4] to [2], namely, f = <f(1),f(2),f(3),f(4)> given by <1,1,2,1>, <1,2,1,1>, <1,2,2,1>, <1,2,1,2>, <2,2,1,2>, <2,1,2,2>, <2,1,1,2>, and <2,1,2,1>.
		

Crossrefs

Cf. A007318.

Programs

  • Haskell
    a189711 n k = (n - k) ^ k - 2 * a007318 (n - 1) k + n - k
    a189711_row n = map (a189711 n) [3..n-2]
    a189711_tabl = map a189711_row [5..]
    -- Reinhard Zumkeller, May 16 2014
  • Maple
    seq(seq((n-k)^k-2*binomial(n-1,k)+(n-k),k=3..(n-2)),n=5..15);
  • Mathematica
    nmax = 15; t[n_, k_] := (n-k)^k-2*Binomial[n-1, k]+(n-k); Flatten[ Table[ t[n, k], {n, 5, nmax}, {k, 3, n-2}]](* Jean-François Alcover, Nov 18 2011, after Maple *)

Formula

T(n,k)=(n-k)^k-2*C(n-1,k)+(n-k).
T(n,3) = A006331(n-4) for n>=5.
T(n+2,n) = A005803(n) for n>=3.
T(2n,n) = A056174(n) for n>=3.