A189733 Denominator of B(0,n) where B(n,n)=0, B(n-1,n) = (-1)^(n+1)/n, and B(m,n) = B(m+1,n-1) + B(m,n-1), n >= 0, m >= 0, is an array of fractions.
1, 1, 1, 2, 1, 6, 1, 4, 3, 5, 1, 12, 1, 7, 5, 8, 1, 18, 1, 10, 7, 11, 1, 24, 1, 13, 9, 14, 1, 30, 1, 16, 11, 17, 1, 36, 1, 19, 13, 20, 1, 42, 1, 22, 15, 23, 1, 48, 1, 25, 17, 26, 1, 54, 1, 28, 19, 29, 1, 60, 1, 31, 21, 32, 1, 66, 1, 34, 23, 35, 1, 72, 1, 37, 25, 38, 1, 78, 1, 40, 27
Offset: 0
Programs
-
Maple
B := proc(m,n) option remember; if m=n then 0; elif n = m+1 then (-1)^(n+1)/n ; elif n > m then procname(m,n-1)+procname(m+1,n-1) ; elif n < m then procname(m-1,n+1)-procname(m-1,n) ; end if; end proc: A189733 := proc(n) denom(B(0,n)) ; end proc: seq(A189733(n),n=0..80) ; # R. J. Mathar, Jun 04 2011
-
Mathematica
b[m_, n_] := b[m, n] = Which[m == n, 0, n == m+1, (-1)^(n+1)/n, n > m, b[m, n-1] + b[m+1, n-1], n < m, b[m-1, n+1] - b[m-1, n]]; a[n_] := b[0, n] // Denominator; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 07 2013 *)
Formula
a(n) = denominator(B(0,n)). Conjecture: a(6*n)=1, a(1+6*n)=1+3*n, a(2+6*n)=1+2*n, a(3+6*n)=2+3*n, a(4+6*n)=1, a(5+6*n)=6+6*n. a(n) = 2*a(n-6) - a(n-12).
Empirical g.f.: (1 + x + x^2 + 2*x^3 + x^4 + 6*x^5 - x^6 + 2*x^7 + x^8 + x^9 - x^10) / ((1 - x)^2 * (1 + x)^2 * (1 - x + x^2)^2 * (1 + x + x^2)^2). - Colin Barker, Nov 11 2016
Comments