A189740 Partial sums of tetranacci numbers (A000288).
1, 2, 3, 4, 8, 15, 28, 53, 102, 196, 377, 726, 1399, 2696, 5196, 10015, 19304, 37209, 71722, 138248, 266481, 513658, 990107, 1908492, 3678736, 7090991, 13668324, 26346541, 50784590, 97890444, 188689897, 363711470, 701076399, 1351368208, 2604845972
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2, 0, 0, 0, -1).
Crossrefs
Cf. A000288.
Programs
-
Mathematica
Accumulate[LinearRecurrence[{1,1,1,1},{1,1,1,1},50]] (* or *) LinearRecurrence[ {2,0,0,0,-1},{1,2,3,4,8},50] (* Harvey P. Dale, May 23 2011 *)
Formula
a(1)=1, a(2)=2, a(3)=3, a(4)=4, a(5)=8, a(n)=2*a(n-1)-a(n-5). - Harvey P. Dale, May 23 2011
G.f.: -x*(2*x^3+x^2-1) / ((x-1)*(x^4+x^3+x^2+x-1)). - Colin Barker, Aug 07 2013