A189761 Numbers n for which the set of residues {Fibonacci(k) mod n, k=0,1,2,....} is minimal.
1, 2, 3, 4, 5, 8, 11, 21, 29, 55, 76, 144, 199, 377, 521, 987, 1364, 2584, 3571, 6765, 9349, 17711, 24476, 46368, 64079, 121393, 167761, 317811, 439204, 832040, 1149851, 2178309, 3010349, 5702887, 7881196, 14930352, 20633239, 39088169, 54018521, 102334155
Offset: 1
Examples
For n=55, the residues are {0, 1, 2, 3, 5, 8, 13, 21, 34, 47, 52, 54} which can also be written as {0, 1, 2, 3, 5, 8, 13, 21, -21, -8, -3, -1}.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1).
Programs
-
Mathematica
Union[{2, 5}, Fibonacci[Range[2, 20, 2]], LucasL[Range[1, 20, 2]]]
-
PARI
Vec(x*(x^8+x^7-x^6-2*x^5-3*x^4-2*x^3+2*x+1)/((x^2-x-1)*(x^2+x-1)) + O(x^100)) \\ Colin Barker, Oct 29 2013
Formula
From Colin Barker, Oct 29 2013: (Start)
a(n) = 3*a(n-2) - a(n-4) for n > 9.
G.f.: x*(x^8 + x^7 - x^6 - 2*x^5 - 3*x^4 - 2*x^3 + 2*x + 1) / ((x^2-x-1)*(x^2+x-1)). (End)
Comments