A189764 Greatest integer x such that x' = 2n and x is not a semiprime, or 0 if there is no such x, where x' is the arithmetic derivative (A003415).
0, 0, 0, 0, 0, 8, 0, 12, 0, 0, 0, 20, 0, 0, 0, 28, 0, 0, 0, 0, 0, 24, 0, 44, 0, 0, 0, 52, 0, 36, 0, 0, 0, 40, 0, 68, 0, 0, 0, 76, 0, 0, 0, 0, 0, 60, 0, 92, 0, 0, 0, 0, 0, 81, 0, 48, 0, 0, 0, 116, 0, 84, 0, 124, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 148, 0, 72
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
dn[0] = 0; dn[1] = 0; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; nn = 200; d = Array[dn, (nn/2)^2]; Table[s1 = Flatten[Position[d, n]]; s2 = Select[s1, ! IntegerQ[Sqrt[(n/2)^2 - #]] &]; If[s2 == {}, 0, s2[[-1]]], {n, 2, nn, 2}]
Comments