cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A189785 a(n) = n+floor(n*r/s)+floor(nt/s); r=Pi/2, s=arcsin(5/13), t=arcsin(12/13).

Original entry on oeis.org

6, 14, 22, 30, 38, 46, 54, 62, 70, 78, 86, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 182, 190, 198, 206, 214, 222, 230, 238, 246, 254, 262, 270, 278, 286, 294, 302, 310, 318, 326, 334, 342, 350, 358, 366, 374, 380, 388, 396, 404, 412, 420, 428, 436, 444, 452, 460, 468, 476, 484, 492, 500, 508, 516, 524, 532, 540, 548
Offset: 1

Views

Author

Clark Kimberling, Apr 27 2011

Keywords

Comments

This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
a(n)=n+[ns/r]+[nt/r],
b(n)=n+[nr/s]+[nt/s],
c(n)=n+[nr/t]+[ns/t], where []=floor.
Taking r=Pi/2, s=arcsin(5/13), t=arcsin(12/13) gives
a=A005408, b=A189785, c=A189786. Note that r=s+t.
a(n) first differs from A017137(n-1) at n=48 (a(48)=380 but A017137(47)=382). - Nathaniel Johnston, May 16 2011

Crossrefs

Programs

  • Mathematica
    r=Pi/2; s=ArcSin[5/13]; t=ArcSin[12/13];
    a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
    b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
    c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
    Table[a[n], {n, 1, 120}]  (*A005408*)
    Table[b[n], {n, 1, 120}]  (*A189785*)
    Table[c[n], {n, 1, 120}]  (*A189786*)
    Table[b[n]/2, {n, 1, 120}]  (*A189787*)
    Table[c[n]/2, {n, 1, 120}]  (*A004773*)

A189786 a(n) = n + [nr/t] + [ns/t]; r=Pi/2, s=arcsin(5/13), t=arcsin(12/13).

Original entry on oeis.org

2, 4, 8, 10, 12, 16, 18, 20, 24, 26, 28, 32, 34, 36, 40, 42, 44, 48, 50, 52, 56, 58, 60, 64, 66, 68, 72, 74, 76, 80, 82, 84, 88, 90, 92, 96, 98, 100, 104, 106, 108, 112, 114, 116, 120, 122, 124, 128, 130, 132, 136, 138, 140, 144, 146, 148, 152, 154, 156, 160, 162, 164, 168, 170, 172, 176, 178, 180, 184, 186, 188, 192, 194, 196, 200, 202, 204
Offset: 1

Views

Author

Clark Kimberling, Apr 27 2011

Keywords

Comments

See A189785.
Conjecture: Sequence consists of all the positive even numbers except numbers of the form 8*x+6, x >= 0. - Harvey P. Dale, Dec 07 2018
Contains numbers like a(143)=382, a(146)=390, a(149)=398, a(152)=406,... which are not in A047464. - R. J. Mathar, Aug 25 2025
For n<143, a(n) = n+A047217(n+1), but then this formula becomes invalid. - R. J. Mathar, Aug 25 2025

Crossrefs

Programs

  • Mathematica
    (See A189785.)
    With[{t=ArcSin[12/13]},Table[n+Floor[(n*Pi/2)/t]+Floor[(n*ArcSin[5/13])/t],{n,80}]] (* Harvey P. Dale, Dec 07 2018 *)
Showing 1-2 of 2 results.