A189825 Least number k such that d(k-1) + d(k+1) = n, where d(k) is the number of divisors of k.
2, 4, 3, 14, 5, 7, 15, 11, 17, 19, 35, 29, 65, 41, 101, 79, 143, 71, 197, 161, 323, 169, 2917, 181, 577, 239, 575, 629, 899, 419, 1297, 701, 901, 721, 25599, 881, 5183, 1121, 9215, 2351, 4901, 1079, 107585, 1681, 36863, 2159, 3601, 2881, 11663, 2519
Offset: 3
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 3..880
Crossrefs
Cf. A175144.
Programs
-
Mathematica
nn = 100; t = Table[-1, {nn}]; t[[1]] = t[[2]] = 0; cnt = 2; n = 1; While[cnt < nn, n++; s = DivisorSigma[0,n-1] + DivisorSigma[0,n+1]; If[s <= nn && t[[s]] == -1, t[[s]] = n; cnt++]]; Drop[t,2]
Formula
Least k such that A189827(k) = n.
Comments