A189918 Sum of tetrahedral numbers A000292(k), with k in the reduced residue system modulo n.
0, 1, 5, 11, 35, 36, 126, 130, 264, 260, 715, 406, 1365, 952, 1530, 1716, 3876, 1830, 5985, 3300, 5796, 5500, 12650, 5460, 15075, 10556, 16965, 12810, 31465, 9920, 40920, 24616, 34650, 30192, 49210, 26106, 82251, 46740, 67158, 47320
Offset: 1
Keywords
Examples
a(6) = A000292(1) + A000292(5)= 1 + 35 = 36. a(6) = (6*8/4!)*(6*8 + 1*6)*((1/2)*(2/3)) = 36. a(12) = A000292(1) + A000292(5) + A000292(7) + A000292(11) = 1 + 35 + 84 + +286 = 406. a(12) = (12*14/4!)*(12*14 + 1*6)*((1/2)*(2/3)) = 406.
References
- T. Apostol, Introduction to Analytic Number Theory, Springer, 1986.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Wikipedia, Reduced residue system
Programs
-
Maple
A000292 := proc(n) binomial(n+2,3) ; end proc: A189918 := proc(n) local a; a := 0 ; for k from 0 to n-1 do if igcd(k,n) = 1 then a := a+A000292(k); end if; end do: a ; end proc: seq(A189918(n),n=1..40) ; # R. J. Mathar, Jun 13 2011
-
Mathematica
a[n_] := Sum[ Boole[GCD[k, n] == 1]*k*(k+1)*(k+2)/6, {k, 0, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 12 2012 *)
-
PARI
a(n) = sum(k=0, n-1, if (gcd(n,k)==1, k*(k+1)*(k+2)/6)); \\ Michel Marcus, Feb 01 2016
Comments