cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189918 Sum of tetrahedral numbers A000292(k), with k in the reduced residue system modulo n.

Original entry on oeis.org

0, 1, 5, 11, 35, 36, 126, 130, 264, 260, 715, 406, 1365, 952, 1530, 1716, 3876, 1830, 5985, 3300, 5796, 5500, 12650, 5460, 15075, 10556, 16965, 12810, 31465, 9920, 40920, 24616, 34650, 30192, 49210, 26106, 82251, 46740, 67158, 47320
Offset: 1

Views

Author

Wolfdieter Lang, May 19 2011

Keywords

Comments

The reduced residue system modulo n used here is the set of numbers k from the set {0,1,...,n-1} which satisfy gcd(k,n)=1. There are phi(n) = A000010(n) such numbers k. Cf. A038566. See also the Apostol reference p. 133, and the Wikipedia link.
This is the m=3 member of a family of sequences, call them rmnS(m) (reduced mod n sum), with entries rmnS(m;n):=sum(binomial(k+m-1,m),0<=k<=n-1 with gcd(k,n)=1), m>=0, n>=1. Recall gcd(0,n)=n.
The members for m=0, 1, and 2 are A000010(n), A023896(n) and A127415(n), respectively, where in the last two the offset for n=1 should be taken as 0 (not 1).

Examples

			a(6) = A000292(1) + A000292(5)= 1 + 35 = 36.
a(6) = (6*8/4!)*(6*8 + 1*6)*((1/2)*(2/3)) = 36.
a(12) = A000292(1) + A000292(5) + A000292(7) + A000292(11) = 1 + 35 + 84 + +286 = 406.
a(12) = (12*14/4!)*(12*14 + 1*6)*((1/2)*(2/3)) = 406.
		

References

  • T. Apostol, Introduction to Analytic Number Theory, Springer, 1986.

Crossrefs

Programs

  • Maple
    A000292 := proc(n) binomial(n+2,3) ; end proc:
    A189918 := proc(n) local a; a := 0 ; for k from 0 to n-1 do if igcd(k,n) = 1 then a := a+A000292(k); end if; end do: a ; end proc:
    seq(A189918(n),n=1..40) ; # R. J. Mathar, Jun 13 2011
  • Mathematica
    a[n_] := Sum[ Boole[GCD[k, n] == 1]*k*(k+1)*(k+2)/6, {k, 0, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 12 2012 *)
  • PARI
    a(n) = sum(k=0, n-1, if (gcd(n,k)==1, k*(k+1)*(k+2)/6)); \\ Michel Marcus, Feb 01 2016

Formula

a(n) = Sum_{k=0..n-1, gcd(k,n)=1 } * A000292(k), n>=1.
a(n) = (n*(n+2)/4!) *{n*(n+2) + mu(rad(n))*rad(n)} *phi(n)/n, n>=2, with rad(n) = A007947(n) the squarefree kernel of n, mu(n)=A008683(n), and phi(n)= A000010(n).
Note that phi(n)/n = A076512(n)/A109395(n) = phi(rad(n))/rad(n).
Proof by principle of inclusion-exclusion.