cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189942 Table, read by rows, of the number of quivers of type Ã_(n-1) according to the parameter k (n >= 2, 1 <= k <= [n/2]).

Original entry on oeis.org

1, 2, 5, 4, 14, 12, 42, 36, 22, 132, 108, 100, 429, 349, 315, 172, 1430, 1144, 1028, 980, 4862, 3868, 3432, 3240, 1651, 16796, 13260, 11700, 10920, 10584, 58786, 46210, 40520, 37556, 36036, 18028, 208012, 162792, 142120, 130900, 124740, 121968
Offset: 2

Views

Author

Jonathan Vos Post, May 01 2011

Keywords

Comments

Table 1, p. 15 of Bastian.
There is a bijection with dissections of an annulus [Hermund André Torkildsen]. - N. J. A. Sloane, Jan 31 2013

Examples

			The table begins
===================================
n  |  r=1 | r=2 | r=3 | r=4 | r=5 |
===================================
n=2     1
n=3     2
n=4     5      4
n=5    14     12
n=6    42     36    22
n=7   132    108   100
n=8   429    349   315   172
n=9  1430   1144  1028   980
n=10 4862   3868  3432  3240  1651
===================================
		

References

  • Francois Bergeron, Gilbert Labelle and Pierre Leroux, Combinatorial species and tree-like structures, Encyclopedia of Mathematics and its Applications, vol. 67, Cambridge University Press, Cambridge, 1998, Translated from the 1994 French original by Margaret Readdy, With a foreword by Gian-Carlo Rota.

Crossrefs

Cf. A000108 (r=1), A000888 (n=2r+1).

Programs

  • Mathematica
    a[r_, r_] := 1/2 (Binomial[2 r, r]/2 + Sum[EulerPhi[k]/(4 r) Binomial[2 r/k, r/k]^2, {k, Divisors@r}]);
    a[r_, s_] := 1/2 Sum[EulerPhi[k]/(r + s) Binomial[2 r/k, r/k] Binomial[2 s/k, s/k], {k, Intersection[Divisors@r, Divisors@s]}];
    Table[a[r, n - r], {n, 2, 10}, {r, n/2}] // TableForm
    (* Andrey Zabolotskiy, Jan 19 2022 *)

Extensions

Rows 11-13 added by Andrey Zabolotskiy, Jan 19 2022