cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189966 Decimal expansion of (3+sqrt(33))/4, which has periodic continued fractions [2,5,2,1,2,5,2,1,...] and [3/2, 1, 3/2, 1, ...].

Original entry on oeis.org

2, 1, 8, 6, 1, 4, 0, 6, 6, 1, 6, 3, 4, 5, 0, 7, 1, 6, 4, 9, 6, 2, 6, 5, 2, 8, 6, 7, 0, 5, 4, 7, 3, 2, 3, 2, 9, 5, 5, 5, 0, 6, 6, 1, 1, 4, 4, 9, 5, 6, 9, 8, 0, 9, 1, 9, 2, 4, 9, 6, 9, 3, 6, 7, 6, 4, 1, 4, 7, 5, 1, 8, 0, 3, 6, 4, 3, 5, 1, 1, 5, 6, 7, 5, 6, 7, 8, 1, 3, 4, 1, 3, 9, 9, 1, 9, 7, 0, 3, 0, 6, 0, 4, 8, 8, 9, 3, 6, 9, 2, 3, 6, 4, 1, 2, 7, 0, 9, 4, 6
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

Let R denote a rectangle whose shape (i.e., length/width) is (3+sqrt(33))/4. This rectangle can be partitioned into squares in a manner that matches the continued fraction [2,5,2,1,2,5,2,1,2,5,2,1,...]. It can also be partitioned into rectangles of shape 3/2 and 3 so as to match the continued fraction [3/2, 1, 3/2, 1, 3/2, ...]. For details, see A188635.
Apart from the first digit, the same as A188939. - R. J. Mathar, May 16 2011

Examples

			2.18614066163450716496265286705473232955506611449...
		

Crossrefs

Programs

  • Magma
    (3+Sqrt(33))/4 // G. C. Greubel, Jan 12 2018
  • Mathematica
    FromContinuedFraction[{3/2, 1, {3/2, 1}}]
    ContinuedFraction[%, 25]  (* [2,5,2,1,2,5,2,1,...] *)
    RealDigits[N[%%, 120]]  (* A189966 *)
    N[%%%, 40]
  • PARI
    (3+sqrt(33))/4 \\ G. C. Greubel, Jan 12 2018