A189978 Number of isosceles triangles, distinct up to congruence, on an n X n grid (or geoboard).
0, 1, 5, 11, 22, 35, 53, 70, 100, 126, 159, 188, 237, 276, 328, 372, 439, 491, 564, 623, 706, 775, 859, 931, 1049, 1129, 1231, 1323, 1448, 1540, 1674, 1772, 1928, 2041, 2183, 2301, 2483, 2602, 2758, 2898, 3095
Offset: 1
Examples
For n=3 the five isosceles triangles are: **. *.* .*. ..* *.. *.. ... *.. *.. ..* ... *.. .*. ..* .*.
Links
- Alec Jones, Examples for n = 1 to 5
- Alec Jones, Example for n = 24
Programs
-
Maple
Triangles:=proc(n) local TriangleSet,i,j,k,l,A,B,C; TriangleSet:={}: for i from 0 to n do for j from 0 to n do for k from 0 to n do for l from 0 to n do A:=i^2+j^2: B:=k^2+l^2: C:=(i-k)^2+(j-l)^2: if A^2+B^2+C^2<>2*(A*B+B*C+C*A) then TriangleSet:={op(TriangleSet),sort([sqrt(A),sqrt(B),sqrt(C)])}: fi: od: od: od: od: return(TriangleSet); end: IsIsoscelesTriangle:=proc(T) if T[1]=T[2] or T[1]=T[3] or T[2]=T[3] then true else false fi: end: a:=proc(n) local TriangleSet,IsoscelesTriangleSet,i; TriangleSet:=Triangles(n): IsoscelesTriangleSet:={}: for i from 1 to nops(TriangleSet) do if IsIsoscelesTriangle(TriangleSet[i]) then IsoscelesTriangleSet:={op(IsoscelesTriangleSet),TriangleSet[i]} fi: od: return(nops(IsoscelesTriangleSet)); end:
Extensions
a(21)-a(40) from Martin Renner, May 08 2011