cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190002 a(n) = n + [n*s/r] + [n*t/r]; r=1, s=(sinh(1))^2, t=(cosh(1))^2.

Original entry on oeis.org

4, 8, 14, 18, 22, 28, 32, 38, 42, 46, 52, 56, 60, 66, 70, 76, 80, 84, 90, 94, 100, 104, 108, 114, 118, 122, 128, 132, 138, 142, 146, 152, 156, 160, 166, 170, 176, 180, 184, 190, 194, 200, 204, 208, 214, 218, 222, 228, 232, 238, 242, 246, 252, 256, 260, 266, 270, 276, 280, 284, 290, 294, 300, 304, 308, 314, 318, 322, 328, 332, 338
Offset: 1

Views

Author

Clark Kimberling, May 03 2011

Keywords

Comments

This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
a(n) = n + [n*s/r] + [n*t/r],
b(n) = n + [n*r/s] + [n*t/s],
c(n) = n + [n*r/t] + [n*s/t], where []=floor.
Taking r=1, s=(sinh(1))^2, t=(cosh(1))^2 gives

Crossrefs

Programs

  • Magma
    [n + Floor(n*(Sinh(1))^2) + Floor(n*(Cosh(1))^2): n in [1..100]]; // G. C. Greubel, Jan 11 2018
  • Mathematica
    r=1; s=Sinh[1]^2; t=Cosh[1]^2;
    a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
    b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
    c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
    Table[a[n], {n, 1, 120}]  (* A190002 *)
    Table[b[n], {n, 1, 120}]  (* A190003 *)
    Table[c[n], {n, 1, 120}]  (* A005408 *)
    Table[a[n]/2, {n, 1, 120}](* A190004 *)
    Table[b[n]/2, {n, 1, 120}](* A182760 *)
  • PARI
    for(n=1,100, print1(n + floor(n*(sinh(1))^2) + floor(n*(cosh(1))^2), ", ")) \\ G. C. Greubel, Jan 11 2018
    

Formula

A190002: a(n) = n + [n*(sinh(1))^2] + [n*(cosh(1))^2].
A190003: b(n) = n + [n*(csch(1))^2] + [n*(coth(1))^2].
A005408: c(n) = 2*n - 1.