cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A190007 a(n) = n + [n*r/s] + [n*t/s]; r=1, s=sin(Pi/3), t=csc(Pi/3).

Original entry on oeis.org

3, 6, 10, 13, 16, 20, 24, 27, 31, 34, 37, 41, 45, 48, 52, 55, 58, 62, 65, 69, 73, 76, 79, 83, 86, 90, 94, 97, 100, 104, 107, 110, 115, 118, 121, 125, 128, 131, 136, 139, 142, 146, 149, 152, 156, 160, 163, 167, 170, 173, 177, 181, 184, 188, 191, 194, 198, 201, 205, 209, 212, 215, 219, 222, 226, 230, 233, 236, 240, 243, 246, 251, 254
Offset: 1

Views

Author

Clark Kimberling, May 03 2011

Keywords

Comments

See A190006.

Crossrefs

Programs

  • Magma
    C := ComplexField(); [n + Floor(n/Sin(Pi(C)/3)) + Floor(n/(Sin(Pi(C)/3))^2): n in [1..100]]; // G. C. Greubel, Jan 11 2018
  • Mathematica
    r=1; s=Sin[Pi/3]; t=Csc[Pi/3];
    a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
    b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
    c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
    Table[a[n], {n, 1, 120}]  (* A190006 *)
    Table[b[n], {n, 1, 120}]  (* A190007 *)
    Table[c[n], {n, 1, 120}]  (* A190008 *)
  • PARI
    for(n=1,100, print1(n + floor(n/sin(Pi/3)) + floor(n/(sin(Pi/3))^2), ", ")) \\ G. C. Greubel, Jan 11 2018
    

Formula

A190006: a(n) = n + [n*sin(Pi/3)] + [n*csc(Pi/3)].
A190007: b(n) = n + [n*csc(Pi/3)] + [n*(csc(Pi/3))^2].
A190008: c(n) = n + [n*sin(Pi/3)] + [n*(sin(Pi/3))^2].

A190008 a(n) = n + [n*r/t] + [n*s/t]; r=1, s=sin(Pi/3), t=csc(Pi/3).

Original entry on oeis.org

1, 4, 7, 10, 12, 15, 18, 20, 22, 25, 28, 31, 33, 36, 38, 41, 43, 46, 49, 52, 54, 57, 59, 62, 64, 67, 70, 73, 75, 77, 80, 83, 85, 88, 91, 94, 96, 98, 101, 104, 106, 109, 112, 115, 116, 119, 122, 125, 127, 130, 133, 136, 137, 140, 143, 146, 148, 151, 154, 156, 158, 161, 164, 167, 169, 172, 175, 177, 179, 182, 185, 188, 190
Offset: 1

Author

Clark Kimberling, May 03 2011

Keywords

Comments

See A190006.

Crossrefs

Programs

  • Magma
    C := ComplexField(); [n + Floor(n*Sin(Pi(C)/3)) + Floor(n*(Sin(Pi(C)/3))^2): n in [1..100]]; // G. C. Greubel, Jan 11 2018
  • Mathematica
    r=1; s=Sin[Pi/3]; t=Csc[Pi/3];
    a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
    b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
    c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
    Table[a[n], {n, 1, 120}]  (* A190006 *)
    Table[b[n], {n, 1, 120}]  (* A190007 *)
    Table[c[n], {n, 1, 120}]  (* A190008 *)

Formula

A190006: a(n) = n + [n*sin(Pi/3)] + [n*csc(Pi/3)].
A190007: b(n) = n + [n*csc(Pi/3)] + [n*(csc(Pi/3))^2].
A190008: c(n) = n + [n*sin(Pi/3)] + [n*(sin(Pi/3))^2].
Showing 1-2 of 2 results.