cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190014 a(0)=0, a(1)=1, if n = (n-1)', then a(n)=0 otherwise a(n)=2*a((n-1)'), where n' is the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 0, 2, 2, 4, 2, 8, 2, 4, 4, 16, 2, 8, 2, 8, 4, 4, 2, 8, 2, 4, 8, 16, 2, 4, 8, 16, 32, 4, 2, 0, 2, 4, 4, 16, 4, 4, 2, 8, 8, 4, 2, 8, 2, 4, 16, 8, 2, 32, 4, 8, 4, 16, 2, 512, 8, 8, 16, 0, 2, 8, 2, 8, 16, 4, 4, 16, 2, 4, 16, 0, 2, 16, 2, 16, 1024, 4, 4, 0, 2, 256, 4, 16, 2, 8, 16, 8, 4, 4, 2, 32, 4, 8, 8, 64, 4, 4, 2, 8, 32, 4
Offset: 0

Views

Author

Paolo P. Lava, May 04 2011

Keywords

Comments

Only power of 2 and zeros. If p is prime than a(p+1)=2.
If n’>n+1 than a(n+1) is not immediately available. It is necessary to find a(n’)=2*a((n’-1)’) and, if necessary, to repeat the process until a term can be calculate. For instance:
a(9)=2*a(12) -> a(12)=2 and therefore a(9)=4.
Again: a(55)=2*a(81) -> a(81)=2*a(176) -> a(176)=8*a(112) -> a(112)=16 and therefore a(176)=128 -> a(81)=256 -> a(55)=512.
First zero at a(31)=2*a(31) and for all Giuga numbers plus one (31, 859, 1723, 66199, etc.). This because the so far known Giuga numbers satisfy the equation n’=n+1. Other zeros for a(59)=8*a(31), a(71)=16*a(31), a(79)=32*a(31), a(106)=32*a(31), etc.
The general equation a(n+1)=k*a(n’), with k integer and |k|>1, a(0)=0, a(1)=1, leads to the following sequence: 0, 1, 0, k, k, k^2, k, k^3,k, k^2, k^2, k^4, k, k^3, k, k^3, k^2, k^2, k, k^3, etc.
For k=1 or k=-1 we get and incongruence because of a(31)=a(31).

Examples

			a(0)=0
a(1)=1
a(2)=a(1+1)=2*a(1')=2*a(0)=0
a(3)=a(2+1)=2*a(2')=2*a(1)=2
a(4)=a(3+1)=2*a(3')=2*a(1)=2
a(5)=a(4+1)=2*a(4')=2*a(4)=4
a(6)=a(5+1)=2*a(5')=2*a(1)=2
a(7)=a(6+1)=2*a(6')=2*a(5)=8  etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local a,f,n,p,pfs,t;
    a:=array(0..100000); a[0]:=0; a[1]:=1; t:=2; lprint(0,a[0]); lprint(1,a[1]);
    for n from 1 by 1 to i do
        pfs:=ifactors(n)[2]; f:=n*add(op(2,p)/op(1,p),p=pfs);
        a[n+1]:=t*a[f]; lprint(n+1,a[n+1]);
    od;
    end:
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; a[0] = 0; a[1] = 1; a[n_] := a[n] = Module[{d = dn[n - 1]}, If[d == n, 0, 2 a[d]]]; Array[a,100,0] (* T. D. Noe, May 05 2011 *)