cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190050 Expansion of ((1-x)*(3*x^2-3*x+1))/(1-2*x)^3.

Original entry on oeis.org

1, 2, 6, 17, 46, 120, 304, 752, 1824, 4352, 10240, 23808, 54784, 124928, 282624, 634880, 1417216, 3145728, 6946816, 15269888, 33423360, 72876032, 158334976, 342884352, 740294656, 1593835520, 3422552064
Offset: 0

Views

Author

Johannes W. Meijer, May 06 2011

Keywords

Comments

The second left hand column of triangle A175136.

Crossrefs

Related to A001788.

Programs

  • Magma
    [1] cat [(n^2 + 5*n + 10)*2^(n-4): n in [1..30]]; // G. C. Greubel, Jan 10 2018
  • Maple
    A190050:= proc(n) option remember; if n=0 then A190050(n):=1: else A190050(n):=(n^2+5*n+10)*2^(n-4) fi: end: seq (A190050(n), n=0..26);
  • Mathematica
    Join[{1}, LinearRecurrence[{6,-12,8}, {2,6,17}, 30]] (* or *) CoefficientList[Series[((1-x)*(3*x^2-3*x+1))/(1-2*x)^3, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
  • PARI
    x='x+O('x^30); Vec(((1-x)*(3*x^2-3*x+1))/(1-2*x)^3) \\ G. C. Greubel, Jan 10 2018
    
  • PARI
    for(n=0,30, print1(if(n==0,1,(n^2 + 5*n + 10)*2^(n-4)), ", ")) \\ G. C. Greubel, Jan 10 2018
    

Formula

G.f.: ((1-x)*(3*x^2-3*x+1))/(1-2*x)^3.
a(n) = (n^2 + 5*n + 10)*2^(n-4) for n >=1 with a(0)=1.
a(n) = A001788(n+1) -4*A001788(n) +6*A001788(n-1) -3*A001788(n-2) for n >=1 with a(0)=1.