A190051 Expansion of (1-x)*(10*x^4-20*x^3+16*x^2-6*x+1)/(1-2*x)^5.
1, 3, 12, 44, 150, 482, 1476, 4344, 12368, 34240, 92544, 244992, 636928, 1629696, 4111360, 10242048, 25227264, 61505536, 148570112, 355860480, 845807616, 1996095488, 4680056832, 10906763264, 25275924480, 58271465472
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..300 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (10,-40,80,-80,32).
Programs
-
Magma
[1] cat [(264 + 214*n + 14*n^3 + 83*n^2 + n^4)*2^(n-7)/3: n in [1..30]]; // G. C. Greubel, Jan 10 2018
-
Maple
A190051:= proc(n) option remember; if n=0 then A190051(n):=1 else A190051(n):= (264+214*n+14*n^3+83*n^2+n^4)*2^(n-7)/3 fi: end: seq (A190051(n), n=0..25);
-
Mathematica
Join[{1}, LinearRecurrence[{10,-40,80,-80,32}, {3,12,44,150,482}, 30]] (* or *) CoefficientList[Series[(1 - x)*(10*x^4 -20*x^3 +16*x^2 -6*x + 1)/(1 -2*x)^5, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
-
PARI
x='x+O('x^30); Vec((1-x)*(10*x^4-20*x^3+16*x^2-6*x+1)/(1-2*x)^5) \\ G. C. Greubel, Jan 10 2018
-
PARI
for(n=0,30, print1(if(n==0,1,(264 + 214*n + 14*n^3 + 83*n^2 + n^4)*2^(n-7)/3), ", ")) \\ G. C. Greubel, Jan 10 2018
Comments