cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190105 a(n) = (3*A002145(n) - 1)/4.

Original entry on oeis.org

2, 5, 8, 14, 17, 23, 32, 35, 44, 50, 53, 59, 62, 77, 80, 95, 98, 104, 113, 122, 125, 134, 143, 149, 158, 167, 170, 179, 188, 197, 203, 212, 230, 233, 248, 260, 269, 275, 284, 287, 314, 323, 329, 332, 347, 350, 359, 365, 368, 374, 377, 392, 410, 422, 428, 440
Offset: 1

Views

Author

J. M. Bergot, May 04 2011

Keywords

Comments

For primes p of the form 4n+3, in the order of A002145, let us seek solutions for prime p|(a^x + b^y) or p|(a^y + b^x) subject to the conditions p = a+b = x+y and 0 < a,b,x,y < p. The larger of the two exponents x and y is inserted into the sequence.
If either of (a,b) is a primitive root of p, there is a unique solution, either p|(a^x + b^y) or p|(a^y + b^x). If neither is a primitive root (see A060749), there are multiple solutions and p|(a^x + b^y) or p|(a^y + b^x) will always be one of them for some of the given exponents (x,y) contributing to the sequence.

Examples

			For p=43=A002145(7), (x,y)=(11,32) because 43-(43+1)/4=32; hence x=43-32.  With (a,b)=(12,31) the unique solution is 43|(12^11 + 31^32) because 12 is a primitive root of 43. The larger of 11 and 32 is a(7)=32 in the sequence. For 43 multiple solutions occur when neither of the pairs (a,b) is a primitive root of 43: p divides each of 11^4 + 32^39, 11^18 + 32^25, 11^32 + 32^11; note that the exponents (11,32) occur in the last entry.
		

Crossrefs

Cf. A005099 is the list of x in (x,y).

Programs

  • Maple
    for n from 1 to 200 do p:=4*n-1: if(isprime(p))then printf("%d, ", (3*p-1)/4); fi: od: # Nathaniel Johnston, May 18 2011
  • Mathematica
    A002145 := Select[4 Range[300] - 1, PrimeQ]; Table[(3*A002145[[n]] - 1)/4, {n, 1, 60}] (* G. C. Greubel, Nov 07 2018 *)