A190111 Numbers with prime factorization p*q*r*s^2*t^3 (where p, q, r, s, t are distinct primes).
27720, 32760, 41580, 42840, 46200, 47880, 49140, 51480, 54600, 57960, 64260, 64680, 67320, 71400, 71820, 72072, 73080, 75240, 76440, 77220, 78120, 79560, 79800, 85800, 86940, 88920, 91080, 93240, 94248, 96600, 99960, 100980, 101640, 103320
Offset: 1
Keywords
Examples
From _Petros Hadjicostas_, Oct 26 2019: (Start) a(1) = (2^3)*(3^2)*5*7*11 = 27720; a(2) = (2^3)*(3^2)*5*7*13 = 32760; a(3) = (2^2)*(3^3)*5*7*11 = 41580; a(4) = (2^3)*(3^2)*5*7*17 = 42840; a(5) = (2^3)*3*(5^2)*7*11 = 46200. (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Will Nicholes, Prime Signatures
- Index to sequences related to prime signature
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,2,3};Select[Range[150000],f]
-
PARI
list(lim)=my(v=List(),t1,t2,t3,t4); forprime(p=2,sqrtnint(lim\420, 3), t1=p^3; forprime(q=2,sqrtint(lim\(30*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,lim\(6*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\(2*t3), if(s==p || s==q || s==r, next); t4=s*t3; forprime(t=2,lim\t4, if(t==p || t==q || t==r || t==s, next); listput(v, t4*t)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016