A190182 Decimal expansion of (1+x+sqrt(8+2x))/4, where x=sqrt(15).
2, 2, 1, 0, 2, 7, 5, 5, 3, 2, 8, 1, 9, 0, 2, 0, 9, 6, 8, 7, 7, 8, 9, 7, 1, 3, 5, 2, 5, 0, 4, 8, 8, 7, 0, 5, 3, 3, 0, 4, 0, 8, 6, 3, 2, 9, 6, 7, 8, 3, 7, 4, 2, 9, 4, 7, 2, 8, 5, 6, 9, 4, 9, 7, 7, 4, 3, 9, 8, 4, 2, 5, 8, 6, 2, 0, 8, 9, 5, 9, 9, 2, 5, 0, 3, 7, 1, 1, 9, 9, 2, 9, 9, 8, 6, 7, 6, 0, 9, 2, 1, 4, 0, 3, 5, 9, 1, 3, 1, 1, 0, 6, 7, 8, 2, 5, 3, 3, 3, 8
Offset: 1
Examples
2.210275532819020968778971352504887053304...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[(1 + Sqrt(15) + Sqrt(8 + 2*Sqrt(15)))/4]; // G. C. Greubel, Dec 28 2017
-
Mathematica
r = (1 + 5^(1/2))/2; FromContinuedFraction[{r, 1, 1, {r, 1, 1}}] FullSimplify[%] ContinuedFraction[%, 100] (*A190183*) RealDigits[N[%%, 120]] (*A190182*) N[%%%, 40] RealDigits[(1 + Sqrt[15] + Sqrt[8 + 2*Sqrt[15]])/4, 10, 100][[1]] (* G. C. Greubel, Dec 28 2017 *)
-
PARI
(1 + sqrt(15) + sqrt(8 + 2*sqrt(15)))/4 \\ G. C. Greubel, Dec 28 2017
Comments