cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190186 Numerator of expression W_n occurring in analysis of bubble sort.

Original entry on oeis.org

1, 2, 10, 29, 97, 739, 6331, 8617, 633127, 1037497, 90414391, 1214394319, 17506484887, 38519714137, 4419404086711, 10972377997177, 1410921315134167, 27316952872520239, 555986170009834231, 154130283599461067, 265123004099257677847, 883735015159907270617, 150492959376114678237751, 293138621437723505079883, 100289605416287509517021527
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2011

Keywords

Examples

			1, 2, 10/3, 29/6, 97/15, 739/90, 6331/630, 8617/720, 633127/45360, 1037497/64800, ...
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 3, Section 5.2.2, p. 129.

Crossrefs

Cf. A190187.

Programs

  • Maple
    W:=proc(n) local t1,r,s;
    t1:=add( add(s!*r^(n-s), s=r+1..n), r=0..n-1);
    t1/n!;
    end;
  • Mathematica
    Numerator[Table[n! + Sum[ Sum[s!*k^(n - s), {s, k + 1, n}], {k, 1, n - 1}]/n!, {n, 1, 50}]] (* G. C. Greubel, Dec 29 2017 *)
  • PARI
    for(n=1,30, print1(numerator(1 + sum(k=1,n-1, sum(s=k+1, n, s!*k^(n-s)))/n!), ", ")) \\ G. C. Greubel, Dec 29 2017

Formula

W_n = Sum_{r=0..(n-1)}( Sum_{s=(r+1)..n} s!*r^(n-s) )/n!.
W_n = numerator(A190194(n)/n!).