A190186 Numerator of expression W_n occurring in analysis of bubble sort.
1, 2, 10, 29, 97, 739, 6331, 8617, 633127, 1037497, 90414391, 1214394319, 17506484887, 38519714137, 4419404086711, 10972377997177, 1410921315134167, 27316952872520239, 555986170009834231, 154130283599461067, 265123004099257677847, 883735015159907270617, 150492959376114678237751, 293138621437723505079883, 100289605416287509517021527
Offset: 1
Examples
1, 2, 10/3, 29/6, 97/15, 739/90, 6331/630, 8617/720, 633127/45360, 1037497/64800, ...
References
- D. E. Knuth, The Art of Computer Programming, Vol. 3, Section 5.2.2, p. 129.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..445
Crossrefs
Cf. A190187.
Programs
-
Maple
W:=proc(n) local t1,r,s; t1:=add( add(s!*r^(n-s), s=r+1..n), r=0..n-1); t1/n!; end;
-
Mathematica
Numerator[Table[n! + Sum[ Sum[s!*k^(n - s), {s, k + 1, n}], {k, 1, n - 1}]/n!, {n, 1, 50}]] (* G. C. Greubel, Dec 29 2017 *)
-
PARI
for(n=1,30, print1(numerator(1 + sum(k=1,n-1, sum(s=k+1, n, s!*k^(n-s)))/n!), ", ")) \\ G. C. Greubel, Dec 29 2017
Formula
W_n = Sum_{r=0..(n-1)}( Sum_{s=(r+1)..n} s!*r^(n-s) )/n!.
W_n = numerator(A190194(n)/n!).