cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190187 Denominator of expression W_n occurring in analysis of bubble sort.

Original entry on oeis.org

1, 1, 3, 6, 15, 90, 630, 720, 45360, 64800, 4989600, 59875200, 778377600, 1556755200, 163459296000, 373621248000, 44460928512000, 800296713216000, 15205637551104000, 3949516247040000, 6386367771463680000, 20071441567457280000, 3231502092360622080000, 5965850016665763840000, 1938901255416373248000000, 7201633234403672064000000
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2011

Keywords

Examples

			1, 2, 10/3, 29/6, 97/15, 739/90, 6331/630, 8617/720, 633127/45360, 1037497/64800, ...
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 3, Section 5.2.2, p. 129.

Crossrefs

Cf. A190186.

Programs

  • Maple
    W:=proc(n) local t1,r,s;
    t1:=add( add(s!*r^(n-s), s=r+1..n), r=0..n-1);
    t1/n!;
    end;
  • Mathematica
    Denominator[Table[n! + Sum[ Sum[s!*k^(n - s), {s, k + 1, n}], {k, 1, n - 1}]/n!, {n, 1, 50}]] (* G. C. Greubel, Dec 28 2017 *)
  • PARI
    for(n=1,30, print1(denominator(1 + sum(k=1,n-1, sum(s=k+1, n, s!*k^(n-s)))/n!), ", ")) \\ G. C. Greubel, Dec 28 2017

Formula

W_n = Sum_{r=0..(n-1)}( Sum_{s=(r+1)..n} s!*r^(n-s) )/n!.
W_n = denominator(A190194(n)/n!).