A190266 Numbers k such that tau(k-1) = (tau(k))^2 = tau(k+1), where tau(k) = A000005(k) (number of divisors of k).
7, 1241, 1673, 1751, 1769, 2471, 2839, 3161, 3305, 3497, 3711, 4135, 4265, 4279, 4471, 4711, 5191, 5433, 5561, 6017, 6041, 6103, 6313, 6809, 6953, 7031, 7241, 7463, 7671, 8023, 8057, 8345, 8791, 8889, 9079, 10167, 10793, 10841, 11111, 11209, 11391, 11751, 12297, 12729
Offset: 1
Keywords
Examples
a(1)=7 because tau(6) = (tau(7))^2 = tau(8) = 4; a(2)=1241 because tau(1240) = (tau(1241))^2 = tau(1242) = 16.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Transpose[Select[Partition[Range[15000], 3, 1], DivisorSigma[0, #[[2]]]^2 == DivisorSigma[0, First[#]] == DivisorSigma[0, Last[#]]&]][[1]] + 1 (* Amiram Eldar, Jul 17 2019 after Harvey P. Dale at A175116 *)
-
PARI
isA190266(n)=my(t=numdiv(n-1)); issquare(t) & t==numdiv(n+1) & t==numdiv(n)^2 \\ Charles R Greathouse IV, May 14 2011
Extensions
Data corrected by Amiram Eldar, Jul 17 2019