A190272 Numbers n such that n' = a -1, with n and a semiprimes and gcd(a,n) > 1, where n' is the arithmetic derivative of n.
6, 14, 15, 22, 33, 38, 46, 51, 62, 86, 87, 91, 95, 118, 141, 142, 145, 158, 159, 166, 206, 249, 262, 267, 278, 287, 295, 321, 326, 382, 395, 398, 411, 422, 445, 446, 473, 502, 519, 537, 542, 545, 581, 591, 622, 662, 695, 699, 703, 718, 745, 758, 766, 789, 838, 886, 895, 926, 951, 958, 995, 998, 1046, 1126, 1139, 1145, 1167, 1199, 1238, 1262, 1318, 1329, 1347, 1382, 1401, 1441, 1486, 1678, 1707, 1717, 1718, 1726, 1745, 1757, 1761, 1766
Offset: 1
Keywords
Examples
For n=6, 6' = 5, a = 5-1 = 4, gcd(4,6)=2, so 6 is a term.
Links
- For Rassias conjecture: Preda Mihăilescu, Review of Problem Solving and Selected Topics in Number Theory, Newsletter of the European Mathematical Society, March 2011, p. 46.
Crossrefs
Programs
-
Maple
der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); # for quick reference only seq(`if`(bigomega(i)=2 and bigomega(der(i)+1)=2 and gcd(i,der(i)+1)>1,i,NULL),i=1..2000);
-
PARI
find(lim)=my(v=List());forprime(p=2,sqrtint(lim\2),forstep(q=2*p-1,lim\p,p+p,if(isprime(q\p+2)&isprime(q),listput(v,p*q))));vecsort(Vec(v)) \\ Charles R Greathouse IV, May 08 2011
Formula
Semiprimes pq with (p+q+1)/p prime. - Charles R Greathouse IV, May 08 2011
Comments