cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190274 Numbers n such that n' = p^2-1, with n = semiprime = p*q, n' is the arithmetic derivative of n. Also: semiprimes of the form p*(p^2-p-1).

Original entry on oeis.org

15, 95, 287, 1199, 4607, 23519, 28799, 101567, 223199, 296207, 352799, 903167, 1019999, 2032127, 2230799, 2666159, 3285599, 5896799, 7606367, 13939199, 19392479, 28839887, 36154799, 46139039, 54295919, 62412767, 68250239, 73384079, 74440799, 90316799, 95234687, 109672319, 115263647, 118129199, 214562399, 223279487, 234503807, 236792879, 262963199, 270420767, 309829727, 355897439, 422999999, 486823247, 589884959, 628687487
Offset: 1

Views

Author

Giorgio Balzarotti, May 07 2011

Keywords

Comments

The sequence shows similarity with the Rassias Conjecture ("for any prime p there are two primes p1 and p2 such that p*p1=p1+p2+1, p>2, p2>p1") with p1=p we have p*p=p+p2-1 (see A190272). Generalization can be achieved by removing semiprimarity condition and accepting p^e, e>=2.

Examples

			n=15, 15'=8, a=8+1=9=3^2 -> a(1)=15
		

Crossrefs

Cf. A001358 (semiprime), A003415 (arithmetic derivative), A190273 (n'=a-1), A190273 (n'=a+1).

Programs

  • Maple
    seq(`if`(isprime((ithprime(i)^2-ithprime(i)-1))=true,(ithprime(i)^2-ithprime(i)-1)*ithprime(i),NULL),i=1..300);