A190312 Number of scalene triangles on an n X n grid (or geoboard).
0, 0, 40, 368, 1704, 5704, 15400, 36096, 75632, 145968, 263592, 451392, 738360, 1163552, 1774840, 2632344, 3808992, 5394752, 7493936, 10233832, 13759008, 18241312, 23877984, 30896984, 39551456, 50137240, 62983128, 78459880
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Geoboard.
- Eric Weisstein's World of Mathematics, Scalene Triangle.
Programs
-
Mathematica
q[n_] := Module[{sqDist, t0, t1, t2}, (* Squared distances *) sqDist = {p_, q_} :> (Floor[p/n] - Floor[q/n])^2 + (Mod[p, n] - Mod[q, n])^2; (* Triads of points *) t0 = Subsets[Range[0, n^2 - 1], {3, 3}]; (* Exclude collinear vertices *) t1 = Select[t0, Det[Map[{Floor[#/n], Mod[#, n], 1} &, {#[[1]], #[[2]], #[[ 3]]}]] != 0 &]; (* Calculate sides *) t2 = Map[{#, Sort[{{#[[2]], #[[3]]}, {#[[3]], #[[1]]}, {#[[1]], #[[2]]}} /. sqDist]}&, t1]; (* Select scalenes *) t2 = Select[t2, #[[2, 1]] != #[[2, 2]] && #[[2, 2]] != #[[2, 3]] && #[[2,3]] != #[[2, 1]] &]; Return[Length[t2]]; ]; Map[q[#] &, Range[9]] (* César Eliud Lozada, Mar 26 2021 *)