A190313 Number of scalene triangles, distinct up to congruence, on an n X n grid (or geoboard).
0, 0, 3, 18, 57, 137, 280, 517, 863, 1368, 2069, 3007, 4218, 5774, 7704, 10109, 13025, 16523, 20671, 25567, 31274, 37891, 45529, 54213, 64082, 75320, 87901, 102014, 117736, 135217, 154606, 176024, 199502, 225290, 253485, 284305, 317811, 354282, 393618, 436202, 482332
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Geoboard.
- Eric Weisstein's World of Mathematics, Scalene Triangle.
Programs
-
Mathematica
q[n_] := Module[{sqDist, t0, t1, t2, t3}, (*Squared distances*) sqDist = {p_,q_} :> (Floor[p/n] - Floor[q/n])^2 + (Mod[p, n] - Mod[q, n])^2; (*Triads of points*) t0 = Subsets[Range[0, n^2 - 1], {3, 3}]; (* Exclude collinear vertices *) t1 = Select[t0, Det[Map[{Floor[#/n], Mod[#, n], 1} &, {#[[1]], #[[2]], #[[ 3]]}]] != 0 &]; (*Calculate sides*) t2 = Map[{#, Sort[{{#[[2]], #[[3]]}, {#[[3]], #[[1]]}, {#[[1]], #[[2]]}} /. sqDist]} &, t1]; (*Exclude not-scalenes*) t2 = Select[ t2, #[[2, 1]] != #[[2, 2]] && #[[2, 2]] != #[[2, 3]] && #[[2, 3]] != #[[2, 1]] &]; (* Find groups of congruent triangles *) t3 = GatherBy[Range[Length[t2]], t2[[#, 2]] &]; Return[Length[t3]]; ]; Map[q[#] &, Range[10]] (* César Eliud Lozada, Mar 26 2021 *)