cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190313 Number of scalene triangles, distinct up to congruence, on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 3, 18, 57, 137, 280, 517, 863, 1368, 2069, 3007, 4218, 5774, 7704, 10109, 13025, 16523, 20671, 25567, 31274, 37891, 45529, 54213, 64082, 75320, 87901, 102014, 117736, 135217, 154606, 176024, 199502, 225290, 253485, 284305, 317811, 354282, 393618, 436202, 482332
Offset: 1

Views

Author

Martin Renner, May 08 2011

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_] :=
      Module[{sqDist, t0, t1, t2, t3},
       (*Squared distances*)
       sqDist = {p_,q_} :> (Floor[p/n] - Floor[q/n])^2 + (Mod[p, n] - Mod[q, n])^2;
       (*Triads of points*)
       t0 = Subsets[Range[0, n^2 - 1], {3, 3}];
       (* Exclude collinear vertices *)
       t1 = Select[t0,
         Det[Map[{Floor[#/n], Mod[#, n], 1} &, {#[[1]], #[[2]], #[[
               3]]}]] != 0 &];
       (*Calculate sides*)
       t2 = Map[{#,
           Sort[{{#[[2]], #[[3]]}, {#[[3]], #[[1]]}, {#[[1]], #[[2]]}} /.
             sqDist]} &, t1];
       (*Exclude not-scalenes*)
       t2 = Select[
         t2, #[[2, 1]] != #[[2, 2]] && #[[2, 2]] != #[[2, 3]] && #[[2,
              3]] != #[[2, 1]] &];
       (* Find groups of congruent triangles *)
       t3 = GatherBy[Range[Length[t2]], t2[[#, 2]] &];
       Return[Length[t3]];
       ];
    Map[q[#] &, Range[10]] (* César Eliud Lozada, Mar 26 2021 *)

Formula

a(n) = A028419(n) - A189978(n).